
| Citation: | LI Gege, JIA Shikun, ZHAO Haitong, LAN Shiquan, SUN Tongshuai, YANG Shaoqiong. Development Trend of Target Non-Acoustic Detection Technology Based on Unmanned Undersea Vehicles[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 510-520. doi: 10.11993/j.issn.2096-3920.2023-0060 |
| [1] |
Song R, Esmaiel H, Sun H, et al. Multi-submarines detection using multistatic sonar system[C]//2020 IEEE 5th Information Technology and Mechatronics Engineering Conference(ITOEC). Chongqing, China: IEEE, 2020.
|
| [2] |
冯国新, 魏志强, 张茜. 美军探反潜作战装备发展趋势浅析[J]. 飞航导弹, 2017(6): 37-41.
|
| [3] |
潘光, 宋保维, 黄桥高, 等. 水下无人系统发展现状及其关键技术[J]. 水下无人系统学报, 2017, 25(2): 44-51.
Pan Guang, Song Baowei, Huang Qiaogao, et al. Development and key techniques of unmanned undersea system[J]. Journal of Unmanned Undersea Systems, 2017, 25(2): 44-51.
|
| [4] |
肖玉洁, 邱志明, 石章松. UUV 国内外研究现状及若干关键问题综述[J]. 电光与控制, 2014, 21(2): 46-49.
Xiao Yujie, Qiu Zhiming, Shi Zhangsong. On current research status of UUV and its critical technologies[J]. Electronics Optics & Control, 2014, 21(2): 46-49.
|
| [5] |
沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.
Shen Xinrui, Wang Yanhui, Yang Shaoqiong, et al. Development of underwater gliders: An overview and prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 89-106.
|
| [6] |
The University of Southern Mississippi. Eagle Ray deep sea mapping AUV[EB/OL]. [2023-07-03]. https://www.usm.edu/hydrographic-science-research-center/2021eaglerayflyer.pdf.
|
| [7] |
General Dynamics. Bluefin-21[EB/OL]. (2021-05-01)[2023-07-03]. https://gdmissionsystems.com/-/media/general-dynamics/maritime-and-strategic-systems/bluefin/pdf/maritime-bluefin-21-uuv-datasheet.ashx.
|
| [8] |
Boeing. Echo Voyager[EB/OL]. (2017-04-22)[2023-07-03]. https://www.boeing.com/resources/boeingdotcom/defense/autonomous-systems/echo-voyager/echo_voyager_product_sheet.pdf.
|
| [9] |
Teledyne Marine. Gavia AUV[EB/OL]. (2023-02-08)[2023-07-03]. https://www.teledynemarine.com/en-us/products/SiteAssets/Gavia/Gavia%20AUV%20Data%20Sheet.pdf.
|
| [10] |
SOEST Ocean Gliders(SOG)[EB/OL]. (2023-05-29)[2023-08-02]. https://hahana.soest.hawaii.edu/seagliders/.
|
| [11] |
Eriksen C C, Osse T J, Light R D, et al. Seaglider: A long-range autonomous underwater vehicle for oceanographic research[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 424-436. doi: 10.1109/48.972073
|
| [12] |
陈正想, 胡光兰, 吕冰, 等. 磁通门传感器研究现状及其在海洋领域的应用[J]. 数字海洋与水下攻防, 2021, 4(1): 37-45.
|
| [13] |
陶荣华, 王丹, 迟铖. 国外航空磁探潜装备应用分析及发展趋势[J]. 水下无人系统学报, 2021, 29(4): 369-373.
Tao Ronghua, Wang Dan, Chi Cheng. Application analysis and development trend of foreign airborne magnetic anomaly detection equipment[J]. Journal of Unmanned Undersea Systems, 2021, 29(4): 369-373.
|
| [14] |
CAE. Magnetic anomaly detection extended role(MAD-XR)[EB/OL]. [2023-07-03]. https://www.cae.com/media/media-center/documents/datasheet.MAD-XR.pdf.
|
| [15] |
Slocum R E, Kuhlman G, Ryan L, et al. Polatomic advances in magnetic detection[C]//OCEANS’02 MTS/IEEE. Biloxi, MI, USA, 2002: 945-951.
|
| [16] |
张朝阳, 刘济民, 杨林. 磁探潜关键技术现状及发展趋势[J]. 科学技术与工程, 2022, 22(1): 18-27.
Zhang Chaoyang, Liu Jimin, Yang Lin. Situation and development trend of the key technology of magnetic submarine exploration[J]. Science Technology and Engineering, 2022, 22(1): 18-27.
|
| [17] |
张扬, 黄卫东, 董长哲, 等. 海洋激光雷达探测卫星 技术发展研究[J]. 红外与激光工程, 2020, 49(11): 20-31.
Zhang Yang, Huang Weidong, Dong Changzhe, et al. Research on the development of the detection satellite technology in oceanographic lidar[J]. Infrared and Laser Engineering, 2020, 49(11): 20-31.
|
| [18] |
杨华勇, 梁永辉. 机载蓝绿激光水下目标探测技术的现状及前景[J]. 光机电信息, 2003(12): 6-10.
Yang Huayong, Liang Yonghui. Present status and prospects of airborne blue-green laser for searching underwater objects[J]. OME Information, 2003(12): 6-10.
|
| [19] |
崔国恒, 于德新. 非声探潜技术现状及其对抗措施[J]. 火力与指挥控制, 2007(12): 10-13.
Cui Guoheng, Yu De-xin. Status quo of non-acoustics antisubmarine detecting technology and its countermeasures[J]. Fire Control & Command Control, 2007(12): 10-13.
|
| [20] |
Penny M F, Billard B, Abbot R H. LADS-the Australian laser airborne depth sounder[J]. Remote Sensing, 1989, 10(9): 1463-1479.
|
| [21] |
马兰. 机载激光测深的技术装备[J]. 测绘技术装备, 2003(2): 39-42.
Ma Lan. A review on airborne laser scanning technology for bathometric survey[J]. Geomatics Technology and Equipment, 2003(2): 39-42.
|
| [22] |
胡善江, 贺岩, 陈卫标, 等. 机载双频激光雷达系统设计和研制[J]. 红外与激光工程, 2018, 47(9): 930001-1-930001-6.
Hu Shanjiang, He Yan, Chen Weibiao, et al. Design of airborne dual-frequency laser radar system[J]. Infrared and Laser Engineering, 2018, 47(9): 930001-1-930001-6.
|
| [23] |
吕德亮, 贺岩, 俞家勇, 等. 机载双频激光雷达结构误差与定位精度研究[J]. 激光与光电子学进展, 2018, 55(8): 48-55.
Lü Deliang, He Yan, Yu Jiayong, et al. Research of error analysis and positioning accuracy of airborne dual-frequency lidar[J]. Laser & Optoelectronics Progress, 2018, 55(8): 48-55.
|
| [24] |
程锦房, 张伽伟, 姜润翔, 等. 水下电磁异探测技术的发展现状[J]. 水雷战与舰船防护, 2019, 2(4): 45-49.
Cheng Jinfang, Zhang Jiawei, Jiang Runxiang, et al. Development status of underwater electromagnetic detection technology[J]. Digital Ocean& Underwater Warfare, 2019, 2(4): 45-49.
|
| [25] |
包中华. 基于水下电磁场的舰船目标远程探测方法研究[D]. 武汉: 海军工程大学, 2010: 4.
|
| [26] |
Slater M. Summary of commercial electromagnetic field sensors for the marine environment[R]. Oregon: Oregon Wave Energy Trust, 2010: 6-8.
|
| [27] |
Corporation polyamp. Underwater electric field sensors UEP/ELFE[EB/OL]. (2015-06-12)[2023-04-17]. http://www.polyamp.com.
|
| [28] |
Crona L, Fristedt T, Lundberg P. Field tests of a new type of graphite-fiber electrode for measuring motionally induced voltages[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(1): 92-99. doi: 10.1175/1520-0426(2001)018<0092:FTOANT>2.0.CO;2
|
| [29] |
王虎彪, 王勇, 许大欣, 等. 重力垂直梯度数据地图特征及其辅助导航[J]. 中国惯性技术学报, 20l0, 18(1): 93-96.
Wang Hubiao, Wang Yong, Xu Daxin, et al. Data map characteristics of gravity vertical gradient and its aided inertial navigation analysis[J]. Journal of Chinese Inertial Technology, 20l0, 18(1): 93-96.
|
| [30] |
Hu M Z, Li J C, Li H, et a1. Bathymetry predicted from vertical gravity gradient anomalies and ship soundings[J]. Geodesy and Geodynamics, 2014, 88(1): 41-46.
|
| [31] |
张志强, 郑晗, 崔银锋. 航空重力垂直梯度探测潜艇方法研究[J]. 海洋测绘, 2019, 39(4): 6-9, 13.
Zhang Zhiqiang, Zheng Han, Cui Yinfeng. Research on the submarine detection method based on the airborne gravity vertical gradient[J]. Hydrographic Surveying and Charting, 2019, 39(4): 6-9, 13.
|
| [32] |
陈允锋, 刘伟. 非声探潜新技术浅析[J]. 光纤与电缆及其应用技术, 2016(6): 29-32.
Chen Yunfeng, Liu Wei. Brief analysis of new non-acoustic submarine detecting technologies[J]. Optical Fiber & Electric Cable and Their Applications, 2016(6): 29-32.
|
| [33] |
闫足. 基于重力梯度的潜艇威胁目标探测方法研究[D]. 武汉: 华中科技大学, 2015.
|
| [34] |
Murphy C A. The Air-FTGTM airborne gravity gradiometer system[C]//ASEG-PESA Airborne Gravity 2004 Workshop. [S.l.]: Geoscience Australia Record, 2004(18): 7-14.
|
| [35] |
Dransfield M, Lee J B. The FALCON airborne gravity gradiometer survey systems[C]//ASEG-PESA Airborne Gravity 2004 Workshop. [S.l.]: Geoscience Australia Record, 2004(18) : 15-20.
|
| [36] |
谢泉松, 蔡广友. “形形色色”的新型探潜技术[J]. 国防科技, 2015, 36(6): 54-57.
|
| [37] |
武志星. 五个研究团队助力DARPA“持续性海洋生物传感器”项目[J]. 科技中国, 2019(3): 1.
|
| [38] |
宋保维, 潘光, 张立川, 等. 自主水下航行器发展趋势及关键技术[J]. 中国舰船研究, 2022, 17(5): 27-44.
Song Baowei, Pan Guang, Zhang Lichuan, et al. Development trend and key technologies of autonomous underwater vehicles[J]. Chinese Journal of Ship Research, 2022, 17(5): 27-44.
|
| [39] |
邱志明, 马焱, 孟祥尧, 等. 水下无人装备前沿发展趋势与关键技术分析[J]. 水下无人系统学报, 2023, 31(1): 1-9.
Qiu Zhiming, Ma Yan, Meng Xiangyao, et al. Analysis on the development trend and key technologies of unmanned underwater equipment[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 1-9.
|
| [40] |
Huy D Q, Sadjoli N, Azam A B, et al. Object perception in underwater environments: A survey on sensors and sensing methodologies[J]. Ocean Engineering, 2023, 267: 113202. doi: 10.1016/j.oceaneng.2022.113202
|
| [41] |
吴天元, 江丽霞, 崔光磊. 水下观测和探测装备能源供给技术现状与发展趋势[J]. 中国科学院院刊, 2022, 37(7): 898-909.
Wu Tianyuan, Jiang Lixia, Cui Guanglei. Status and trends of energy power supply technologyies for underwater equipment[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(7): 898-909.
|