• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 31 Issue 4
Aug  2023
Turn off MathJax
Article Contents
LI Gege, JIA Shikun, ZHAO Haitong, LAN Shiquan, SUN Tongshuai, YANG Shaoqiong. Development Trend of Target Non-Acoustic Detection Technology Based on Unmanned Undersea Vehicles[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 510-520. doi: 10.11993/j.issn.2096-3920.2023-0060
Citation: LI Gege, JIA Shikun, ZHAO Haitong, LAN Shiquan, SUN Tongshuai, YANG Shaoqiong. Development Trend of Target Non-Acoustic Detection Technology Based on Unmanned Undersea Vehicles[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 510-520. doi: 10.11993/j.issn.2096-3920.2023-0060

Development Trend of Target Non-Acoustic Detection Technology Based on Unmanned Undersea Vehicles

doi: 10.11993/j.issn.2096-3920.2023-0060
  • Received Date: 2023-05-15
  • Accepted Date: 2023-08-01
  • Rev Recd Date: 2023-07-05
  • Available Online: 2023-08-14
  • Unmanned undersea vehicles(UUVs) represented by autonomous undersea vehicles and autonomous underwater gliders have the advantages of low cost, good concealment, high mobility, and easy deployment in flexible networks in underwater target detection. With the development and mature application of anechoic technology, the self-noise of submarines and other large underwater vehicles is close to the background noise of the ocean, and the underwater target detection technology relying on only acoustic information no longer has universal advantages, and non-acoustic detection technologies involving light, electricity, and magnetism have gradually shown superiority. Utilizing the navigational advantages of UUVs, carrying optical, electrical, magnetic, and other non-acoustic detection sensors to carry out target discovery attempts has gradually become a new development and application direction. Based on the analysis and summary of the types, principles, and applications of non-acoustic detection sensors already carried by current UUVs, this paper pointed out the main research directions and progress of magnetic anomaly detection, laser detection, electric field detection, gravity gradient detection, and biological detection and summarized the current key technical problems and technical difficulties of non-acoustic detection based on UUVs. It also predicted the development direction, so as to provide some references for enhancing non-acoustic detection technologies.

     

  • loading
  • [1]
    Song R, Esmaiel H, Sun H, et al. Multi-submarines detection using multistatic sonar system[C]//2020 IEEE 5th Information Technology and Mechatronics Engineering Conference(ITOEC). Chongqing, China: IEEE, 2020.
    [2]
    冯国新, 魏志强, 张茜. 美军探反潜作战装备发展趋势浅析[J]. 飞航导弹, 2017(6): 37-41.
    [3]
    潘光, 宋保维, 黄桥高, 等. 水下无人系统发展现状及其关键技术[J]. 水下无人系统学报, 2017, 25(2): 44-51.

    Pan Guang, Song Baowei, Huang Qiaogao, et al. Development and key techniques of unmanned undersea system[J]. Journal of Unmanned Undersea Systems, 2017, 25(2): 44-51.
    [4]
    肖玉洁, 邱志明, 石章松. UUV 国内外研究现状及若干关键问题综述[J]. 电光与控制, 2014, 21(2): 46-49.

    Xiao Yujie, Qiu Zhiming, Shi Zhangsong. On current research status of UUV and its critical technologies[J]. Electronics Optics & Control, 2014, 21(2): 46-49.
    [5]
    沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.

    Shen Xinrui, Wang Yanhui, Yang Shaoqiong, et al. Development of underwater gliders: An overview and prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 89-106.
    [6]
    The University of Southern Mississippi. Eagle Ray deep sea mapping AUV[EB/OL]. [2023-07-03]. https://www.usm.edu/hydrographic-science-research-center/2021eaglerayflyer.pdf.
    [7]
    [8]
    [9]
    Teledyne Marine. Gavia AUV[EB/OL]. (2023-02-08)[2023-07-03]. https://www.teledynemarine.com/en-us/products/SiteAssets/Gavia/Gavia%20AUV%20Data%20Sheet.pdf.
    [10]
    SOEST Ocean Gliders(SOG)[EB/OL]. (2023-05-29)[2023-08-02]. https://hahana.soest.hawaii.edu/seagliders/.
    [11]
    Eriksen C C, Osse T J, Light R D, et al. Seaglider: A long-range autonomous underwater vehicle for oceanographic research[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 424-436. doi: 10.1109/48.972073
    [12]
    陈正想, 胡光兰, 吕冰, 等. 磁通门传感器研究现状及其在海洋领域的应用[J]. 数字海洋与水下攻防, 2021, 4(1): 37-45.
    [13]
    陶荣华, 王丹, 迟铖. 国外航空磁探潜装备应用分析及发展趋势[J]. 水下无人系统学报, 2021, 29(4): 369-373.

    Tao Ronghua, Wang Dan, Chi Cheng. Application analysis and development trend of foreign airborne magnetic anomaly detection equipment[J]. Journal of Unmanned Undersea Systems, 2021, 29(4): 369-373.
    [14]
    CAE. Magnetic anomaly detection extended role(MAD-XR)[EB/OL]. [2023-07-03]. https://www.cae.com/media/media-center/documents/datasheet.MAD-XR.pdf.
    [15]
    Slocum R E, Kuhlman G, Ryan L, et al. Polatomic advances in magnetic detection[C]//OCEANS’02 MTS/IEEE. Biloxi, MI, USA, 2002: 945-951.
    [16]
    张朝阳, 刘济民, 杨林. 磁探潜关键技术现状及发展趋势[J]. 科学技术与工程, 2022, 22(1): 18-27.

    Zhang Chaoyang, Liu Jimin, Yang Lin. Situation and development trend of the key technology of magnetic submarine exploration[J]. Science Technology and Engineering, 2022, 22(1): 18-27.
    [17]
    张扬, 黄卫东, 董长哲, 等. 海洋激光雷达探测卫星 技术发展研究[J]. 红外与激光工程, 2020, 49(11): 20-31.

    Zhang Yang, Huang Weidong, Dong Changzhe, et al. Research on the development of the detection satellite technology in oceanographic lidar[J]. Infrared and Laser Engineering, 2020, 49(11): 20-31.
    [18]
    杨华勇, 梁永辉. 机载蓝绿激光水下目标探测技术的现状及前景[J]. 光机电信息, 2003(12): 6-10.

    Yang Huayong, Liang Yonghui. Present status and prospects of airborne blue-green laser for searching underwater objects[J]. OME Information, 2003(12): 6-10.
    [19]
    崔国恒, 于德新. 非声探潜技术现状及其对抗措施[J]. 火力与指挥控制, 2007(12): 10-13.

    Cui Guoheng, Yu De-xin. Status quo of non-acoustics antisubmarine detecting technology and its countermeasures[J]. Fire Control & Command Control, 2007(12): 10-13.
    [20]
    Penny M F, Billard B, Abbot R H. LADS-the Australian laser airborne depth sounder[J]. Remote Sensing, 1989, 10(9): 1463-1479.
    [21]
    马兰. 机载激光测深的技术装备[J]. 测绘技术装备, 2003(2): 39-42.

    Ma Lan. A review on airborne laser scanning technology for bathometric survey[J]. Geomatics Technology and Equipment, 2003(2): 39-42.
    [22]
    胡善江, 贺岩, 陈卫标, 等. 机载双频激光雷达系统设计和研制[J]. 红外与激光工程, 2018, 47(9): 930001-1-930001-6.

    Hu Shanjiang, He Yan, Chen Weibiao, et al. Design of airborne dual-frequency laser radar system[J]. Infrared and Laser Engineering, 2018, 47(9): 930001-1-930001-6.
    [23]
    吕德亮, 贺岩, 俞家勇, 等. 机载双频激光雷达结构误差与定位精度研究[J]. 激光与光电子学进展, 2018, 55(8): 48-55.

    Lü Deliang, He Yan, Yu Jiayong, et al. Research of error analysis and positioning accuracy of airborne dual-frequency lidar[J]. Laser & Optoelectronics Progress, 2018, 55(8): 48-55.
    [24]
    程锦房, 张伽伟, 姜润翔, 等. 水下电磁异探测技术的发展现状[J]. 水雷战与舰船防护, 2019, 2(4): 45-49.

    Cheng Jinfang, Zhang Jiawei, Jiang Runxiang, et al. Development status of underwater electromagnetic detection technology[J]. Digital Ocean& Underwater Warfare, 2019, 2(4): 45-49.
    [25]
    包中华. 基于水下电磁场的舰船目标远程探测方法研究[D]. 武汉: 海军工程大学, 2010: 4.
    [26]
    Slater M. Summary of commercial electromagnetic field sensors for the marine environment[R]. Oregon: Oregon Wave Energy Trust, 2010: 6-8.
    [27]
    Corporation polyamp. Underwater electric field sensors UEP/ELFE[EB/OL]. (2015-06-12)[2023-04-17]. http://www.polyamp.com.
    [28]
    Crona L, Fristedt T, Lundberg P. Field tests of a new type of graphite-fiber electrode for measuring motionally induced voltages[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(1): 92-99. doi: 10.1175/1520-0426(2001)018<0092:FTOANT>2.0.CO;2
    [29]
    王虎彪, 王勇, 许大欣, 等. 重力垂直梯度数据地图特征及其辅助导航[J]. 中国惯性技术学报, 20l0, 18(1): 93-96.

    Wang Hubiao, Wang Yong, Xu Daxin, et al. Data map characteristics of gravity vertical gradient and its aided inertial navigation analysis[J]. Journal of Chinese Inertial Technology, 20l0, 18(1): 93-96.
    [30]
    Hu M Z, Li J C, Li H, et a1. Bathymetry predicted from vertical gravity gradient anomalies and ship soundings[J]. Geodesy and Geodynamics, 2014, 88(1): 41-46.
    [31]
    张志强, 郑晗, 崔银锋. 航空重力垂直梯度探测潜艇方法研究[J]. 海洋测绘, 2019, 39(4): 6-9, 13.

    Zhang Zhiqiang, Zheng Han, Cui Yinfeng. Research on the submarine detection method based on the airborne gravity vertical gradient[J]. Hydrographic Surveying and Charting, 2019, 39(4): 6-9, 13.
    [32]
    陈允锋, 刘伟. 非声探潜新技术浅析[J]. 光纤与电缆及其应用技术, 2016(6): 29-32.

    Chen Yunfeng, Liu Wei. Brief analysis of new non-acoustic submarine detecting technologies[J]. Optical Fiber & Electric Cable and Their Applications, 2016(6): 29-32.
    [33]
    闫足. 基于重力梯度的潜艇威胁目标探测方法研究[D]. 武汉: 华中科技大学, 2015.
    [34]
    Murphy C A. The Air-FTGTM airborne gravity gradiometer system[C]//ASEG-PESA Airborne Gravity 2004 Workshop. [S.l.]: Geoscience Australia Record, 2004(18): 7-14.
    [35]
    Dransfield M, Lee J B. The FALCON airborne gravity gradiometer survey systems[C]//ASEG-PESA Airborne Gravity 2004 Workshop. [S.l.]: Geoscience Australia Record, 2004(18) : 15-20.
    [36]
    谢泉松, 蔡广友. “形形色色”的新型探潜技术[J]. 国防科技, 2015, 36(6): 54-57.
    [37]
    武志星. 五个研究团队助力DARPA“持续性海洋生物传感器”项目[J]. 科技中国, 2019(3): 1.
    [38]
    宋保维, 潘光, 张立川, 等. 自主水下航行器发展趋势及关键技术[J]. 中国舰船研究, 2022, 17(5): 27-44.

    Song Baowei, Pan Guang, Zhang Lichuan, et al. Development trend and key technologies of autonomous underwater vehicles[J]. Chinese Journal of Ship Research, 2022, 17(5): 27-44.
    [39]
    邱志明, 马焱, 孟祥尧, 等. 水下无人装备前沿发展趋势与关键技术分析[J]. 水下无人系统学报, 2023, 31(1): 1-9.

    Qiu Zhiming, Ma Yan, Meng Xiangyao, et al. Analysis on the development trend and key technologies of unmanned underwater equipment[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 1-9.
    [40]
    Huy D Q, Sadjoli N, Azam A B, et al. Object perception in underwater environments: A survey on sensors and sensing methodologies[J]. Ocean Engineering, 2023, 267: 113202. doi: 10.1016/j.oceaneng.2022.113202
    [41]
    吴天元, 江丽霞, 崔光磊. 水下观测和探测装备能源供给技术现状与发展趋势[J]. 中国科学院院刊, 2022, 37(7): 898-909.

    Wu Tianyuan, Jiang Lixia, Cui Guanglei. Status and trends of energy power supply technologyies for underwater equipment[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(7): 898-909.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article Views(1089) PDF Downloads(264) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return