Citation: | WANG Hanwei, JIANG Xiaopeng, LUO Kai, ZHANG Jianan, DANG Jianjun, QIN Kan. Comparison of Partial Admission Axial and Radial Inflow Turbines for Underwater S-CO2 Power Cycle System[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 87-96. doi: 10.11993/j.issn.2096-3920.2023-0037 |
[1] |
Wang X, Shang J, Luo Z, et al. Reviews of power systems and environmental energy conversion for unmanned underwater vehicles[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 1958-1970. doi: 10.1016/j.rser.2011.12.016
|
[2] |
Eagle W, Waters D, Cadou C. System modeling of a novel aluminum fueled UUV power system[C]//Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville, Tennessee, USA: AIAA, 2000.
|
[3] |
Harper A D. Thermochemical power systems for underwater applications[C]//Proceedings of the 6th International Symposium on Unmanned Untethered Submersible Technology. Durham, USA: IEEE, 1989.
|
[4] |
Ahn Y, Bae S J, Kim M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. doi: 10.1016/j.net.2015.06.009
|
[5] |
Hughes T G, Smith R B, Kiely D H. Stored chemical energy propulsion system for underwater applications[J]. Journal of Energy, 1983, 7(2): 128-133. doi: 10.2514/3.62644
|
[6] |
Kiely D H, Moore J T. Hydrocarbon fueled UUV power systems[C]//Proceedings of the 2002 Workshop on Autonomous Underwater Vehicles. San Antonio, USA: IEEE, 2002: 121-128.
|
[7] |
Miller T F, Walter J L, Kiely D H. A next-generation AUV energy system based on aluminum-seawater combustion[C]//Proceedings of the 2002 Workshop on Autonomous Underwater Vehicles. San Antonio, USA: IEEE, 2002: 111-119.
|
[8] |
Qin K, Wang H, Qi J, et al. Aerodynamic design and experimental validation of high pressure ratio partial admission axial impulse turbines for unmanned underwater vehicles[J]. Energy, 2022, 239: 122242. doi: 10.1016/j.energy.2021.122242
|
[9] |
伊进宝, 赵卫兵, 师海潮. 动叶围带对鱼雷涡轮机通流性能影响研究[J]. 水下无人系统学报, 2012, 20(1): 56-59.
Yi Jinbao, Zhao Weibing, Shi Haichao. Effect of rotor shroud on flow passage performance of torpedo turbine[J]. Journal of Unmanned Undersea Systems, 2012, 20(1): 56-59.
|
[10] |
郭庆, 罗凯, 党建军, 等. 基于乏汽增压的水下半闭式循环动力系统研究[J]. 水下无人系统学报, 2021, 29(6): 680-689.
Guo Qing, Luo Kai, Dang Jianjun, et al. Architecture of underwater semi-closed cycle power system based on exhaust booster[J]. Journal of Unmanned Undersea Systems, 2021, 29(6): 680-689.
|
[11] |
Holaind N, Bianchi G, De Miol M, et al. Design of radial turbomachinery for supercritical CO2 systems using theoretical and numerical CFD methodologies[J]. Energy Procedia, 2017, 123: 313-320. doi: 10.1016/j.egypro.2017.07.256
|
[12] |
Saeed M, Berrouk A S, Burhani B M, et al. Turbine design and optimization for a supercritical CO2 cycle using a multifaceted approach based on deep neural network[J]. Energies, 2021, 14(22): 1-27. doi: 10.3390/en14227807
|
[13] |
Grönman A, Uusitalo A. Analysis of radial-outflow turbine design for supercritical CO2 and comparison to radial-inflow turbines[J]. Energy Conversion and Management, 2022, 252: 115089. doi: 10.1016/j.enconman.2021.115089
|
[14] |
王雨琦, 张荻, 谢永慧. 部分进气超临界二氧化碳透平非定常流动研究[J]. 热力透平, 2018, 47(1): 47-52.
Wang Yuqi, Zhang Di, Xie Yonghui. Investigation on unsteady flow of a partial-admission supercritical carbon dioxide turbine[J]. Thermal Turbine, 2018, 47(1): 47-52.
|
[15] |
周奥铮, 宋健, 任晓栋, 等. 超临界二氧化碳布雷顿循环及其向心透平的设计与分析[J]. 工程热物理学报, 2019, 40(6): 1233-1239.
Zhou Aozheng, Song Jian, Ren Xiaodong, et al. The study and analysis of supercritical carbon dioxide brayton cycle and its radial inflow turbine[J]. Journal of Engineering Thermophysics, 2019, 40(6): 1233-1239.
|
[16] |
赵攀, 温玉聪, 娄聚伟, 等. 超临界二氧化碳向心透平设计与热流固耦合研究[J]. 西安交通大学学报, 2022, 56(11): 83-94.
Zhao Pan, Wen Yucong, Lou Juwei, et al. Design and thermal-fluid-solid coupling investigation of supercritical carbon dioxide radial inflow turbine[J]. Journal of Xi’an Jiaotong Univercity, 2022, 56(11): 83-94.
|
[17] |
Baines N C, Whitfield A. Design of radial turbomachines[M]. Essex, UK: Longman Scientific and Technical, 1990.
|
[18] |
Persky R, Sauret E. Loss models for on and off-design performance of radial inflow turbomachinery[J]. Applied Thermal Engineering, 2019, 150: 1066-1077. doi: 10.1016/j.applthermaleng.2019.01.042
|
[19] |
Aungier R H. Turbine aerodynamics: axial-flow and radial-inflow turbine design and analysis[M]. New York, USA: ASME Press, 2006.
|
[20] |
Ohlsson G O. Partial-admission turbines[J]. Journal of the Aerospace Sciences, 1962, 29(9): 1017-1023. doi: 10.2514/8.9686
|
[21] |
Zhang J, Qin K, Li D, et al. Potential of organic rankine cycles for unmanned underwater vehicles[J]. Energy, 2020, 192: 116559. doi: 10.1016/j.energy.2019.116559
|
[22] |
查志武, 史小锋, 钱忠博. 鱼雷热动力技术[M]. 北京: 国防工业出版社, 2006.
|
[23] |
Cao X, Bian J. Supersonic separation technology for natural gas processing: A review[J]. Chemical Engineering and Processing-Process Intensification, 2019, 136: 138-151. doi: 10.1016/j.cep.2019.01.007
|
[24] |
Jones A C. Design and test of a small, high pressure ratio radial turbine[J]. Journal of Turbomachinery, 1996, 118(2): 362-370. doi: 10.1115/1.2836651
|
[25] |
Ventura C A M, Jacobs P A, Rowlands A S, et al. Preliminary design and performance estimation of radial inflow turbines: An automated approach[J]. Journal of Fluids Engineering, 2012, 134(3): 031102. doi: 10.1115/1.4006174
|
[26] |
Wheeler A P S, Ong J. A study of the three-dimensional unsteady real-gas flows within a transonic ORC turbine[C]//Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Düsseldorf, Germany: ASME, 2014.
|