• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 31 Issue 5
Oct  2023
Turn off MathJax
Article Contents
LI Xuhui, GUO Xiaohui, CHENG Shuai, LI Bin. Torpedo Hit Probability Prediction Method Based on Deep Neural Network[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 783-788. doi: 10.11993/j.issn.2096-3920.202206004
Citation: LI Xuhui, GUO Xiaohui, CHENG Shuai, LI Bin. Torpedo Hit Probability Prediction Method Based on Deep Neural Network[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 783-788. doi: 10.11993/j.issn.2096-3920.202206004

Torpedo Hit Probability Prediction Method Based on Deep Neural Network

doi: 10.11993/j.issn.2096-3920.202206004
  • Received Date: 2022-06-07
  • Accepted Date: 2022-08-22
  • Rev Recd Date: 2022-08-04
  • Available Online: 2023-09-25
  • In order to further improve the prediction ability of torpedo hit probability, a torpedo hit probability prediction method based on deep neural network(DNN) was proposed. Firstly, the situation characteristic information was extracted, and the desired situation space was set. In addition, the large sample data set of torpedo operation was constructed based on the Monte-Carlo method. On this basis, the Levenberg-Marquardt optimization algorithm was used to calculate the optimal gradient direction, which improved the computational efficiency of the algorithm. Finally, two typical operational application modes were given based on the model. Experimental results show that the proposed DNN-based prediction model has higher recognition accuracy than other typical intelligent algorithms, which verifies the effectiveness and superiority of the model.

     

  • loading
  • [1]
    武志东, 于雪泳, 许兆鹏. 潜射鱼雷命中概率的解析计算通式及应用[J]. 水下无人系统学报, 2021, 29(2): 203-209.

    Wu Zhidong, Yu Xueyong, Xu Zhaopeng. Analytic formula and employment of the hitting probability for sub-launched torpedo[J]. Journal of Unmanned Undersea Systems, 2021, 29(2): 203-209.
    [2]
    丁光强. 一种火箭助飞鱼雷命中概率实时评估模型[J]. 海军航空工程学院学报, 2015(2): 147-150.

    Ding Guangqiang. A real-time evaluating model of RAT’s hit probability[J]. Journal of Naval Aviation University, 2015(2): 147-150.
    [3]
    谢超, 周景军, 万亚民, 等. 基于脱靶量散布的超空泡鱼雷命中概率研究[J]. 水下无人系统学报, 2022, 30(2): 237-244, 253.

    Xie Chao, Zhou Jingjun, Wan Yamin, et al. Research on hitting probability of supercavitating torpedo based on dispersion of miss distance[J]. Journal of Unmanned Undersea Systems, 2022, 30(2): 237-244, 253.
    [4]
    吴宝奇, 关晓存, 石敬斌. 电磁线圈发射舰载反鱼雷鱼雷拦截概率仿真分析[J]. 火炮发射与控制学报, 2021, 42(4): 7-12.

    Wu Baoqi, Guan Xiaocun, Shi Jingbin. Intercept probability simulation and analysis of electromagnetic coil launched anti-torpedo torpedo[J]. Journal of Gun Launch & Control, 2021, 42(4): 7-12.
    [5]
    袁富宇, 代志恒, 肖碧琴. 基于误差折算的鱼雷一次转角射击命中/发现概率解析计算方法[J]. 水下无人系统学报, 2020, 28(3): 303-308.

    Yuan Fuyu, Dai Zhiheng, Xiao Biqin. An analytical calculation mothed of the hitting/finding probability of torpedo one-time turning-angle shooting based on error conversion[J]. Journal of Unmanned Undersea Systems, 2020, 28(3): 303-308.
    [6]
    杜毅, 黄文斌, 彭汉国. 基于贝叶斯网络的潜艇攻击决策研究[J]. 火力与指挥控制, 2009, 34(S1): 37-40.

    Du Yi, Huang Wenbin, Peng Hanguo. Research on submarine attack decision based on bayesian network[J]. Fire Control & Command Control, 2009, 34(S1): 37-40.
    [7]
    唐克, 王存威, 卢金星. 基于神经网络和matlab的末敏弹系统效能灵敏度仿真[J]. 兵工自动化, 2010, 29(7): 90-93.

    Tang Ke, Wang Cunwei, Lu Jinxing. Research of factor of influencing shrapnel spreading precision based on neural network and Matlab[J]. Ordnance Industry Automation, 2010, 29(7): 90-93.
    [8]
    朱虎明, 李佩, 焦李成, 等. 深度神经网络并行化综述[J]. 计算机学报, 2018, 41(8): 1861-1881.

    Zhu Huming, Li Pei, Jiao Licheng, et al. Review of parallel deep neural network, 2018, 41(8): 1861-1881.
    [9]
    任进军, 王宁. 人工神经网络中损失函数的研究[J]. 甘肃高师学报, 2018, 23(2): 61-63.

    Ren Jinjun, Wang Ning. Research on cost function in artificial neural network[J]. Journal of Gansu Normal Colleges, 2018, 23(2): 61-63.
    [10]
    赵弘, 周瑞祥, 林廷圻. 基于Levenberg-Marquardt算法的神经网络监督控制[J]. 西安交通大学学报, 2002, 36(5): 523-527.

    Zhao Hong, Zhou Ruixiang, Lin Tingqi. Neural network supervised control based on levenberg-marquardt algorithm[J]. Journal of Xi’an Jiaotong University, 2002, 36(5): 523-527.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article Views(522) PDF Downloads(66) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return