
| Citation: | WANG Qian, QIN Kan, HAO Changle, ZHANG Anjing, LUO Kai, DANG Jianjun. Dynamic Characteristics of Propellant Supply System Using Nitrogen[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 760-770. doi: 10.11993/j.issn.2096-3920.202205007 |
| [1] |
何心怡, 卢军, 张思宇, 等. 国外鱼雷现状与启示[J]. 数字海洋与水下攻防, 2020, 3(2): 87-93. doi: 10.19838/j.issn.2096-5753.2020.02.001
He Xinyi, Lu Jun, Zhang Siyu, et al. Research status and enlightenment of foreign torpedoes[J]. Digital Ocean & Underwater Warfare, 2020, 3(2): 87-93. doi: 10.19838/j.issn.2096-5753.2020.02.001
|
| [2] |
Qin K, Wang H, Wang X, et al. Thermodynamic and experimental investigation of a metal fuelled steam rankine cycle for unmanned underwater vehicles[J]. Energy Conversion and Management, 2020, 223: 113281. doi: 10.1016/j.enconman.2020.113281
|
| [3] |
李代金, 党建军, 张进军. 鱼雷热动力技术[M]. 西安: 西北工业大学出版社, 2016.
|
| [4] |
赵宽明. 鱼雷燃料舱增压与燃料输送技术[J]. 水下无人系统学报, 1999, 7(2): 26-28.
Zhao Kuanming. Pressurization and fuel transfer technology of torpedo bunker [J]. Journal of Underwater Unmanned Systems, 1999, 7(2): 26-28.
|
| [5] |
官典, 李世鹏, 刘筑, 等. 横向过载对固体火箭发动机推进剂点火建压过程的影响[J]. 兵工学报, 2021, 42(9): 1877-1887.
Guan Dian, Li Shipeng, Liu Zhu, et al. Influence of lateral acceleration on ignition transientsof solid rocket motor[J]. Acta Armamentarii, 2021, 42(9): 1877-1887.
|
| [6] |
王堃, 李纯飞, 董苑. 挤压式供应系统气瓶压力仿真[J]. 火箭推进, 2013, 39(2): 63-66. doi: 10.3969/j.issn.1672-9374.2013.02.012
Wang Kun, Li Chunfei, Dong Yuan. Simulation of cylinder pressure in extruded supply system[J]. Journal of Rocket Propulsion, 2013, 39(2): 63-66. doi: 10.3969/j.issn.1672-9374.2013.02.012
|
| [7] |
王晋忠, 靳登攀, 雷云龙. 能供系统海水挤压燃料过程的数学仿真[J]. 水下无人系统学报, 2004, 12(2): 29-32.
Wang Jinzhong, Jin Denpan, Lei Yunlong. Mathematic simulation of process of seawater pressurized fuel in energy delivery system[J]. Torpedo Technology, 2004, 12(2): 29-32.
|
| [8] |
罗凯, 王育才. 一种水下热动力能源供应系统的研制[J]. 机床与液压, 2000, 4(1): 8-9. doi: 10.3969/j.issn.1001-3881.2000.01.003
Luo Kai, Wang Yuncai. Development of an underwater thermal power energy supply system[J]. Machine Tool & Hydraulics, 2000, 4(1): 8-9. doi: 10.3969/j.issn.1001-3881.2000.01.003
|
| [9] |
李代金, 张宇文, 罗凯, 等. 热动力水下航行体能源供应系统动态匹配分析[J]. 机床与液压, 2008, 36(12): 93-95. doi: 10.3969/j.issn.1001-3881.2008.12.030
Li Daijin, Zhang Yuwei, Luo Kai, et al. Research on dynamic matching technology of underwater heatpower supply system[J]. Machine Tool & Hydraulics, 2008, 36(12): 93-95. doi: 10.3969/j.issn.1001-3881.2008.12.030
|
| [10] |
Roy S. An Introduction to Fluid Dynamics and Numerical Solution of Shock Tube Problem by Using ROE Solver[R]. Kolkata: St.Xavier’s College & Bose Institute, 2021.
|
| [11] |
Chen S, Sun Q, Klioutchniko V I, et al. Numerical study of chemically reacting flow in a shock tube using a high-order point-implicit scheme[J]. Computers & Fluids, 2019, 184: 107-118.
|
| [12] |
Qiu R F, Che H H, Zhou T, et al. Lattice boltzmann simulation for unsteady shock wave/boundary layer interaction in shock tube[J]. Computers & Mathematics with Applications, 2020, 80(10): 2241-2257.
|
| [13] |
Zhou G Z, Xu K, Liu F. Grid-converged solution and analysis of the unsteady viscous flow in a two-dimensional shock tube[J]. Physics of Fluids, 2018, 30(1): 016102. doi: 10.1063/1.4998300
|
| [14] |
陈海昕, 李凤蔚, 鄂秦, 等. 复杂流场数值模拟中的网格生成[J]. 西北工业大学学报, 2000, 18(2): 194-197. doi: 10.3969/j.issn.1000-2758.2000.02.006
Chen Haixin, Li Fengwei, E Qin, et al. A method for grid generation in numerical flow analysis of complex configurations[J]. Journal of Northwestern Polytechnical University, 2000, 18(2): 194-197. doi: 10.3969/j.issn.1000-2758.2000.02.006
|
| [15] |
伊进宝, 赵卫兵, 师海潮, 等. 鱼雷涡轮机斜切喷管内流场数值模拟[J]. 水下无人系统学报, 2010, 78(3): 223-227.
Yi Jinbao, Zhao Weibing, Shi Haichao, et al. Numerical simulation of flow field in oblique cut nozzle of torpedo turbine[J]. Journal of Underwater Unmanned Systems, 2010, 78(3): 223-227.
|
| [16] |
Jacobs P A, Gollan R J, Denman A J, et al. Eilmer’s theory book: Basic models for gas dynamics and thermochemistry[R]. Brisbane, Australia: The University of Queensland, 2010.
|
| [17] |
Jacobs P A. Shock Tube Modelling with L1d[R]. Brisbane, Australia: The University of Queensland, 1998.
|
| [18] |
Ibrahim M, Hashim W. Oscillating flow in channels with a sudden change in cross section[J]. Computers & Fluids, 1994, 23(1): 211-224.
|
| [19] |
Restivo A, Whitelaw J H. Turbulence characteristics of the flow downstream of a symmetric, plane sudden expansion[J]. Journal of Fluids Engineering, 1978, 100(3): 308-310. doi: 10.1115/1.3448671
|
| [20] |
Devenport W J, Sutton E P. An experimental study of two flows through an axisymmetric sudden expansion[J]. Experiments in Fluids, 1993, 14(6): 423-432. doi: 10.1007/BF00190197
|
| [21] |
Kiverin A, Yakovenko I. On the mechanism of flow evolution in shock-tube experiments[J]. Physics Letters A, 2018, 382(5): 309-314. doi: 10.1016/j.physleta.2017.11.033
|
| [22] |
Nativel D, Cooper S P, Lipkowicz T, et al. Impact of shock-tube facility-dependent effects on incident-and reflected-shock conditions over a wide range of pressures and mach numbers[J]. Combustion and Flame, 2020, 217: 200-211. doi: 10.1016/j.combustflame.2020.03.023
|