• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 31 Issue 5
Oct  2023
Turn off MathJax
Article Contents
WANG Qian, QIN Kan, HAO Changle, ZHANG Anjing, LUO Kai, DANG Jianjun. Dynamic Characteristics of Propellant Supply System Using Nitrogen[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 760-770. doi: 10.11993/j.issn.2096-3920.202205007
Citation: WANG Qian, QIN Kan, HAO Changle, ZHANG Anjing, LUO Kai, DANG Jianjun. Dynamic Characteristics of Propellant Supply System Using Nitrogen[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 760-770. doi: 10.11993/j.issn.2096-3920.202205007

Dynamic Characteristics of Propellant Supply System Using Nitrogen

doi: 10.11993/j.issn.2096-3920.202205007
  • Received Date: 2022-05-21
  • Rev Recd Date: 2022-07-09
  • Available Online: 2023-09-13
  • Whether the fuel supply system can quickly supply the fuel to the combustion chamber with a certain mass flow rate and proportion for engine acting is a key factor during the torpedo start-up process. A one-dimensional compressible numerical simulation program suitable for torpedo energy supply systems was established to simulate the dynamic characteristics of typical torpedo propellant supply systems using nitrogen extrusion. The one-dimensional program was verified against the results from classical literature and Fluent numerical simulation method, and good agreement was achieved. The program could be used to simulate the unsteady flow within the propellant supply system model. The effects of valve diameter, high-pressure chamber pressure, and propellant chamber volume on the dynamic response characteristics of the propellant supply system model were then studied. The results show that with the increase in the valve diameter, the balance time of the system can be shortened, and the effect of the high-pressure chamber pressure on the system balance time is mitigated. Within the studied range, the increase in the propellant chamber volume will also lead to the extension of the system balance time and the eventual reduction of the stable pressure.

     

  • loading
  • [1]
    何心怡, 卢军, 张思宇, 等. 国外鱼雷现状与启示[J]. 数字海洋与水下攻防, 2020, 3(2): 87-93. doi: 10.19838/j.issn.2096-5753.2020.02.001

    He Xinyi, Lu Jun, Zhang Siyu, et al. Research status and enlightenment of foreign torpedoes[J]. Digital Ocean & Underwater Warfare, 2020, 3(2): 87-93. doi: 10.19838/j.issn.2096-5753.2020.02.001
    [2]
    Qin K, Wang H, Wang X, et al. Thermodynamic and experimental investigation of a metal fuelled steam rankine cycle for unmanned underwater vehicles[J]. Energy Conversion and Management, 2020, 223: 113281. doi: 10.1016/j.enconman.2020.113281
    [3]
    李代金, 党建军, 张进军. 鱼雷热动力技术[M]. 西安: 西北工业大学出版社, 2016.
    [4]
    赵宽明. 鱼雷燃料舱增压与燃料输送技术[J]. 水下无人系统学报, 1999, 7(2): 26-28.

    Zhao Kuanming. Pressurization and fuel transfer technology of torpedo bunker [J]. Journal of Underwater Unmanned Systems, 1999, 7(2): 26-28.
    [5]
    官典, 李世鹏, 刘筑, 等. 横向过载对固体火箭发动机推进剂点火建压过程的影响[J]. 兵工学报, 2021, 42(9): 1877-1887.

    Guan Dian, Li Shipeng, Liu Zhu, et al. Influence of lateral acceleration on ignition transientsof solid rocket motor[J]. Acta Armamentarii, 2021, 42(9): 1877-1887.
    [6]
    王堃, 李纯飞, 董苑. 挤压式供应系统气瓶压力仿真[J]. 火箭推进, 2013, 39(2): 63-66. doi: 10.3969/j.issn.1672-9374.2013.02.012

    Wang Kun, Li Chunfei, Dong Yuan. Simulation of cylinder pressure in extruded supply system[J]. Journal of Rocket Propulsion, 2013, 39(2): 63-66. doi: 10.3969/j.issn.1672-9374.2013.02.012
    [7]
    王晋忠, 靳登攀, 雷云龙. 能供系统海水挤压燃料过程的数学仿真[J]. 水下无人系统学报, 2004, 12(2): 29-32.

    Wang Jinzhong, Jin Denpan, Lei Yunlong. Mathematic simulation of process of seawater pressurized fuel in energy delivery system[J]. Torpedo Technology, 2004, 12(2): 29-32.
    [8]
    罗凯, 王育才. 一种水下热动力能源供应系统的研制[J]. 机床与液压, 2000, 4(1): 8-9. doi: 10.3969/j.issn.1001-3881.2000.01.003

    Luo Kai, Wang Yuncai. Development of an underwater thermal power energy supply system[J]. Machine Tool & Hydraulics, 2000, 4(1): 8-9. doi: 10.3969/j.issn.1001-3881.2000.01.003
    [9]
    李代金, 张宇文, 罗凯, 等. 热动力水下航行体能源供应系统动态匹配分析[J]. 机床与液压, 2008, 36(12): 93-95. doi: 10.3969/j.issn.1001-3881.2008.12.030

    Li Daijin, Zhang Yuwei, Luo Kai, et al. Research on dynamic matching technology of underwater heatpower supply system[J]. Machine Tool & Hydraulics, 2008, 36(12): 93-95. doi: 10.3969/j.issn.1001-3881.2008.12.030
    [10]
    Roy S. An Introduction to Fluid Dynamics and Numerical Solution of Shock Tube Problem by Using ROE Solver[R]. Kolkata: St.Xavier’s College & Bose Institute, 2021.
    [11]
    Chen S, Sun Q, Klioutchniko V I, et al. Numerical study of chemically reacting flow in a shock tube using a high-order point-implicit scheme[J]. Computers & Fluids, 2019, 184: 107-118.
    [12]
    Qiu R F, Che H H, Zhou T, et al. Lattice boltzmann simulation for unsteady shock wave/boundary layer interaction in shock tube[J]. Computers & Mathematics with Applications, 2020, 80(10): 2241-2257.
    [13]
    Zhou G Z, Xu K, Liu F. Grid-converged solution and analysis of the unsteady viscous flow in a two-dimensional shock tube[J]. Physics of Fluids, 2018, 30(1): 016102. doi: 10.1063/1.4998300
    [14]
    陈海昕, 李凤蔚, 鄂秦, 等. 复杂流场数值模拟中的网格生成[J]. 西北工业大学学报, 2000, 18(2): 194-197. doi: 10.3969/j.issn.1000-2758.2000.02.006

    Chen Haixin, Li Fengwei, E Qin, et al. A method for grid generation in numerical flow analysis of complex configurations[J]. Journal of Northwestern Polytechnical University, 2000, 18(2): 194-197. doi: 10.3969/j.issn.1000-2758.2000.02.006
    [15]
    伊进宝, 赵卫兵, 师海潮, 等. 鱼雷涡轮机斜切喷管内流场数值模拟[J]. 水下无人系统学报, 2010, 78(3): 223-227.

    Yi Jinbao, Zhao Weibing, Shi Haichao, et al. Numerical simulation of flow field in oblique cut nozzle of torpedo turbine[J]. Journal of Underwater Unmanned Systems, 2010, 78(3): 223-227.
    [16]
    Jacobs P A, Gollan R J, Denman A J, et al. Eilmer’s theory book: Basic models for gas dynamics and thermochemistry[R]. Brisbane, Australia: The University of Queensland, 2010.
    [17]
    Jacobs P A. Shock Tube Modelling with L1d[R]. Brisbane, Australia: The University of Queensland, 1998.
    [18]
    Ibrahim M, Hashim W. Oscillating flow in channels with a sudden change in cross section[J]. Computers & Fluids, 1994, 23(1): 211-224.
    [19]
    Restivo A, Whitelaw J H. Turbulence characteristics of the flow downstream of a symmetric, plane sudden expansion[J]. Journal of Fluids Engineering, 1978, 100(3): 308-310. doi: 10.1115/1.3448671
    [20]
    Devenport W J, Sutton E P. An experimental study of two flows through an axisymmetric sudden expansion[J]. Experiments in Fluids, 1993, 14(6): 423-432. doi: 10.1007/BF00190197
    [21]
    Kiverin A, Yakovenko I. On the mechanism of flow evolution in shock-tube experiments[J]. Physics Letters A, 2018, 382(5): 309-314. doi: 10.1016/j.physleta.2017.11.033
    [22]
    Nativel D, Cooper S P, Lipkowicz T, et al. Impact of shock-tube facility-dependent effects on incident-and reflected-shock conditions over a wide range of pressures and mach numbers[J]. Combustion and Flame, 2020, 217: 200-211. doi: 10.1016/j.combustflame.2020.03.023
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article Views(320) PDF Downloads(25) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return