
| Citation: | HAO Zixiao, WANG Qi. Underwater Target Detection Based on Sonar Image[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 339-348. doi: 10.11993/j.issn.2096-3920.202205004 |
| [1] |
贾宇. 关于海洋强国战略的思考[J]. 太平洋学报, 2018, 26(1): 1-8. doi: 10.14015/j.cnki.1004-8049.2018.01.001
Jia Yu. On China’s maritime power strategy[J]. Pacific Journal, 2018, 26(1): 1-8. doi: 10.14015/j.cnki.1004-8049.2018.01.001
|
| [2] |
Bryner D, Huffer F, Srivastava A, et al. Underwater minefield detection in clutter data using spatial point-process models[J]. IEEE Journal of Oceanic Engineering, 2016, 41(3): 670-681. doi: 10.1109/JOE.2015.2493598
|
| [3] |
Ceccarini C. The multi-role nato-interoperable light weight torpedo for the 21st century[J]. Information & Security an International Journal, 2004, 13(1): 89-97.
|
| [4] |
Chuang M C, Hwang J N, Ye J H, et al. Underwater fish tracking for moving cameras based on deformable multiple kernels[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 47(9): 1-11.
|
| [5] |
张韫峰, 李娟, 黎明. 基于图像处理的水下海参识别和定位方法[J]. 水下无人系统学报, 2021, 29(1): 111-123. doi: 10.11993/j.issn.2096-3920.2021.01.016
Zhang Yunfeng, Li Juan, Li Ming. Underwater sea cucumber identification and localization method based on image processing[J]. Journal of Unmanned Undersea Systems, 2021, 29(1): 111-123. doi: 10.11993/j.issn.2096-3920.2021.01.016
|
| [6] |
Byun S W, Kim J Y. Development and experiment of a hovering AUV tested-bed for underwater exploration[C]// Symposium on Underwater Technology & Workshop on Scientific Use of Submarine Cables& Related Technologies. Tokyo, Japan: IEEE, 2007.
|
| [7] |
李勇航, 牟泽霖, 万芃. 海洋侧扫声呐探测技术的现状及发展[J]. 通讯世界, 2015(3): 213-214. doi: 10.3969/j.issn.1006-4222.2015.03.137
|
| [8] |
Hayes M P, Gough P T. Synthetic aperture sonar: A review of current status[J]. IEEE Journal of Oceanic Engineering, 2009, 34(3): 207-224. doi: 10.1109/JOE.2009.2020853
|
| [9] |
Komatsu T, Igarashi C, Tatsukawa K, et al. Use of multi-beam sonar to map seagrass beds in otsuchi bay on the Sanriku Coast of Japan[J]. Aquatic Living Resources, 2003, 16(3): 223-230. doi: 10.1016/S0990-7440(03)00045-7
|
| [10] |
Lowe D G. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2003, 20: 91-110.
|
| [11] |
Bay H, Tuytelaars T, Gool L V. SURF: Speeded up robust features[C]//Proceedings of the 9th European Conference on Computer Vision-Volume Part I. Berlin, Heidelberg: Springer-Verlag, 2006.
|
| [12] |
Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//IEEE Computer Society Conference on Computer Vision & Pattern Recognition. San Diego, CA, USA: IEEE, 2005.
|
| [13] |
Burges C. A Tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167. doi: 10.1023/A:1009715923555
|
| [14] |
Rish I. An empirical study of the naive Bayes classifier[J]. Journal of Universal Computer Science, 2001, 1(2): 127.
|
| [15] |
Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60: 84-90.
|
| [16] |
Lin T Y, Dollar P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 2117-2125.
|
| [17] |
陈强, 田杰, 黄海宁, 等. 基于统计和纹理特征的SAS图像SVM分割研究[J]. 仪器仪表学报, 2013, 34(6): 214-221. doi: 10.3969/j.issn.0254-3087.2013.06.031
Chen Qiang, Tian Jie, Huang Haining, et al. Study on SAS image segmentation using SVM based on statistical and texture features[J]. Chinese Journal of Scientific Instrument, 2013, 34(6): 214-221. doi: 10.3969/j.issn.0254-3087.2013.06.031
|
| [18] |
王涛, 潘国富, 张济博. 基于侧扫声呐图像纹理特征的海底底质分类研究[C]//2020中国西部声学学术交流会论文集. 酒泉: 2020中国西部声学学术交流会, 2020: 403-406.
|
| [19] |
董凌宇, 单瑞, 刘慧敏, 等. 基于分形纹理特征的侧扫声呐图像沉船识别方法研究[J]. 海洋地质与第四纪地质, 2021, 41(4): 232-239. doi: 10.16562/j.cnki.0256-1492.2020070301
Dong Lingyu, Shan Rui, Liu Huimin, et al. Shipwreck identification with side scan sonar image based on fractal texture[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 232-239. doi: 10.16562/j.cnki.0256-1492.2020070301
|
| [20] |
王其林, 王宏健, 李庆, 等. 侧扫声呐图像特征提取改进方法[J]. 水下无人系统学报, 2019, 27(3): 297-304.
Wang Qilin, Wang Hongjian, Li Qing, et al. Improved feature extraction method for side scan sonar images[J]. Journal of Unmanned Undersea Systems, 2019, 27(3): 297-304.
|
| [21] |
田晓东, 刘忠, 周德超. 基于形状描述直方图的声呐图像目标识别算法[J]. 系统工程与电子技术, 2007(7): 1049-1052,1212. doi: 10.3321/j.issn:1001-506X.2007.07.008
Tian Xiaodong, Liu Zhong, Zhou Dechao. Mine target recognition algorithm of sonar image[J]. Systems Engineering and Electronics, 2007(7): 1049-1052,1212. doi: 10.3321/j.issn:1001-506X.2007.07.008
|
| [22] |
卢逢春, 张殿伦, 郭海涛. 基于属性直方图的图像分割方法及其在声呐图像分割中的应用[J]. 哈尔滨工程大学学报, 2002(3): 1-3,19. doi: 10.3969/j.issn.1006-7043.2002.03.001
Lu Fengchun, Zhang Dianlun, Guo Haitao. Image segmentation based upon bounded histogram and its application to sonar image segmentation[J]. Journal of Harbin Engineering University, 2002(3): 1-3,19. doi: 10.3969/j.issn.1006-7043.2002.03.001
|
| [23] |
Yang F, Du Z, Wu Z. Object recognizing on sonar image based on histogram and geometric feature[J]. Marine Science Bulletin, 2006, 25(5): 64.
|
| [24] |
王晓, 邹泽伟, 李勃勃, 等. 基于多特征融合的彩色图像声呐目标检测[J]. 计算机科学, 2019, 46(S1): 177-181.
|
| [25] |
Sun C, Wang L, Wang N, et al. Image recognition technology in texture identification of marine sediment sonar image[J]. Complexity, 2021, 2021(2): 1-8.
|
| [26] |
罗进华, 蒋锦朋, 朱培民. 基于数学形态学的侧扫声呐图像轮廓自动提取[J]. 海洋学报, 2016, 38(5): 150-157.
Luo Jinhua, Jiang Jinpeng, Zhu Peimin. Automatic extraction of the side-scan sonar imagery outlines based on mathematical morphology[J]. Haiyang Xuebao, 2016, 38(5): 150-157.
|
| [27] |
邹岗, 田晓东, 刘忠. 基于几何特征的声呐图像人造目标检测算法[J]. 舰船科学技术, 2007, 29(6): 177-179, 183.
Zou Gang, Tian Xiaodong, Liu Zhong. Man-made target detection algorithm of sonar image based on geometric feature[J]. Ship Science and Technology, 2007, 29(6): 177-179, 183.
|
| [28] |
Mallet J, Courmontagne P. A new wavelet thresholding approach for SAS images denoising[C]//Oceans, 2006. Boston, USA: IEEE, 2006: 1-6.
|
| [29] |
Isar A, Isar D, Moga S, et al. Multi-scale MAP despeckling of sonar images[C]//Oceans 2005-Europe. Brest, France: IEEE, 2005.
|
| [30] |
金凤来, 钟何平. 一种改进的合成孔径声呐图像Lee滤波算法[J]. 舰船电子工程, 2017, 37(3): 35-37. doi: 10.3969/j.issn.1672-9730.2017.03.009
Jin Fenglai, Zhong Heping. An improved Lee filter algorithm for synthetic aperture sonar[J]. Ship Electronic Engineering, 2017, 37(3): 35-37. doi: 10.3969/j.issn.1672-9730.2017.03.009
|
| [31] |
郭海涛, 徐雷, 赵红叶, 等. 一种抑制声呐图像散斑噪声的形态学滤波器[J]. 仪器仪表学报, 2015, 36(3): 654-660. doi: 10.19650/j.cnki.cjsi.2015.03.022
Guo Haitao, Xu Lei, Zhao Hongye, et al. A morphological filter for despeckling of a sonar image[J]. Chinese Journal of Scientific Instrument, 2015, 36(3): 654-660. doi: 10.19650/j.cnki.cjsi.2015.03.022
|
| [32] |
崔杰, 胡长青, 徐海东. 基于帧差法的多波束前视声呐运动目标检测[J]. 仪器仪表学报, 2018, 39(2): 169-176. doi: 10.19650/j.cnki.cjsi.j1702414
Cui Jie, Hu Changqing, Xu Haidong. Moving target detection for multi-beam forward-looking sonar based on frame-difference method[J]. Chinese Journal of Scientific Instrument, 2018, 39(2): 169-176. doi: 10.19650/j.cnki.cjsi.j1702414
|
| [33] |
崔杰, 胡长青, 徐海东, 等. 改进的Mean Shift算法在前视声呐运动目标跟踪中的应用[J]. 声学技术, 2020, 39(3): 279-283.
Cui Jie, Hu Changqing, Xu Haidong, et al. Application of improved mean shift algorithm in moving target tracking of forward-looking sonar[J]. Technical Acoustics, 2020, 39(3): 279-283.
|
| [34] |
Liu H, Dai J, Wang R, et al. Combining background subtraction and three-frame difference to detect moving object from underwater video[C]//Oceans-shanghai. Shanghai, China: IEEE, 2016.
|
| [35] |
Kalyan B, Balasuriya A. Sonar based automatic target detection scheme for underwater environments using CFAR techniques: A comparative study[C]//Proceedings of the 2004 International Symposium on Underwater Technology(IEEE Cat. No. 04EX869). Taipei: IEEE, 2005.
|
| [36] |
Li K, Liu Z, Hu S L, et al. Target detection of sonar image based on bis-parameter with adaptive windows[J]. Applied Mechanics & Materials, 2013, 347-350: 3407-3410.
|
| [37] |
Villar S A, Acosta G G, Solari F J. OS-CFAR process in 2-D for object segmentation from side-scan sonar data[C]//Information Processing & Control. Cordoba, Argentina: IEEE, 2016.
|
| [38] |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014: 580-587.
|
| [39] |
Girshick R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 1440-1448.
|
| [40] |
Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal net- works[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
|
| [41] |
曾文冠, 鲁建华. 基于卷积神经网络的声呐图像目标检测识别[C]//第十七届船舶水下噪声学术讨论会论文集. 衢州, 中国: 《船舶力学》编辑部, 2019.
|
| [42] |
Fang J, Wang P. Target detection in sonar image based on Faster RCNN[C]//2020 International Conference on Information Science, Parallel and Distributed Systems(ISPDS). Xi’an, China: IEEE, 2020.
|
| [43] |
Ma Q, Jiang L, Yu W, et al. Training with noise adversarial network: A generalization method for object detection on sonar image[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Snowmass, USA: IEEE, 2020: 729-738.
|
| [44] |
马麒翔. 基于深度学习的声呐图像目标检测算法研究[D]. 南京: 东南大学, 2020.
|
| [45] |
Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//NIPS’14: Proceedings of the 27th International Conference on Neural Information Processing Systems. [S.l.]: MIT Press, 2014.
|
| [46] |
Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 779-788.
|
| [47] |
Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]//Computer Vision ECCV 2016. European Conference on Computer Vision-Amsterdam. Cham: Springer, 2016, 9905: 21-37.
|
| [48] |
Wu Y. Sonar image target detection and recognition based on convolution neural network[J]. Mobile Information Systems, 2021, 2021(6): 1-8.
|
| [49] |
王霞. 面向声呐图像的水下小目标识别方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
|
| [50] |
Fan X, Lu L, Shi P, et al. A novel sonar target detection and classification algorithm[J]. Multimedia Tools and Applications, 2022, 81(7): 10091-10106. doi: 10.1007/s11042-022-12054-4
|
| [51] |
Han K, Wang Y, Chen H, et al. A survey on vision transformer[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence. Piscataway, USA: IEEE, 2022.
|
| [52] |
Yu Y, Zhao J, Gong Q, et al. Real-time underwater maritime object detection in side-scan sonar images based on transformer-YOLOV5[J]. Remote Sensing, 2021, 13(18): 3555. doi: 10.3390/rs13183555
|
| [53] |
凡志邈, 李海林, 夏伟杰, 等. 基于深度学习的成像声纳水下目标的检测与分类[C]//中国声学学会水声学分会2019年学术会议论文集. 南京, 中国: 中国声学学会水声学分会, 2019.
|
| [54] |
李宝奇, 黄海宁, 刘纪元, 等. 基于改进SSD的合成孔径声呐图像水下多尺度目标轻量化检测模型[J]. 电子与信息学报, 2021, 43(10): 2854-62. doi: 10.11999/JEIT201042
Li Baoqi, Huang Haining, Liu Jiyuan, et al. Synthetic aperture sonar underwater multi-scale target efficient detection model based on improved single shot detector[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2854-62. doi: 10.11999/JEIT201042
|
| [55] |
Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]//European Conference on Computer Vision. Cham: Springer, 2020: 213-229.
|
| [56] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 5998-6008.
|
| [57] |
汤寓麟, 李厚朴, 张卫东, 等. 侧扫声纳检测沉船目标的轻量化DETR-YOLO法[J]. 系统工程与电子技术, 2022, 44(8): 2427-2436. doi: 10.12305/j.issn.1001-506X.2022.08.06
Tang Yulin, Li Houpu, Zhang Weidong, et al. Lightweight DETR-YOLO method for detecting shipwreck target in side-scan sonar[J]. Systems Engineering and Electronics, 2022, 44(8): 2427-2436. doi: 10.12305/j.issn.1001-506X.2022.08.06
|
| [58] |
Patel V M, Gopalan R, Li R, et al. Visual domain adaptation: A survey of recent advances[J]. Signal Processing Magazine, IEEE, 2015, 32(3): 53-69. doi: 10.1109/MSP.2014.2347059
|
| [59] |
朱兆彤, 付学志, 胡友峰. 一种利用迁移学习训练卷积神经网络的声呐图像识别方法[J]. 水下无人系统学报, 2020, 28(1): 89-96. doi: 10.11993/j.issn.2096-3920.2020.01.013
Zhu Zhaotong, Fu Xuezhi, Hu Youfeng. A sonar image recognition method based on convolutional neural network trained through transfer learning[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 89-96. doi: 10.11993/j.issn.2096-3920.2020.01.013
|
| [60] |
武铄, 王晓, 张丹阳, 等. 联合迁移学习和深度学习的侧扫声呐沉船识别方法[J]. 河南科技, 2021, 40(36): 36-40. doi: 10.3969/j.issn.1003-5168.2021.36.015
|
| [61] |
于淼. 基于深度学习的侧扫声呐图像目标检测方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
|
| [62] |
盛子旗, 霍冠英. 样本仿真结合迁移学习的声呐图像水雷检测[J]. 智能系统学报, 2021, 16(2): 385-392. doi: 10.11992/tis.202101030
Sheng Ziqi, Huo Guanying. Detection of underwater mine target in side scan sonar image based on sample simulation and transfer learning[J]. CAAI Transactions on Intelligent Systems, 2021, 16(2): 385-392. doi: 10.11992/tis.202101030
|
| [63] |
Tang Y, Jin S, Bian G, et al. Shipwreck target recognition in side-scan sonar images by improved YOLOv3 model based on transfer learning[J]. IEEE Access, 2020, 8: 173450-173460. doi: 10.1109/ACCESS.2020.3024813
|
| [64] |
付同强, 胡桥, 刘钰, 等. 基于优化二维变分模态分解与迁移学习的水下目标识别方法[J]. 水下无人系统学报, 2021, 29(2): 153-163. doi: 10.11993/j.issn.2096-3920.2021.02.004
Fu Tongqiang, Hu Qiao, Liu Yu, et al. Underwater target identification method based on optimized 2D variational mode decomposition and transfer learning[J]. Journal of Unmanned Undersea Systems, 2021, 29(2): 153-163. doi: 10.11993/j.issn.2096-3920.2021.02.004
|