• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 31 Issue 2
Apr  2023
Turn off MathJax
Article Contents
SHI Hao, FAN Hui, LI Jianchen, ZHAO Runhui, LI Ya. Pressure Sensor Error Compensation Algorithm Based on MEA-BP Neural Network[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 252-258. doi: 10.11993/j.issn.2096-3920.202205002
Citation: SHI Hao, FAN Hui, LI Jianchen, ZHAO Runhui, LI Ya. Pressure Sensor Error Compensation Algorithm Based on MEA-BP Neural Network[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 252-258. doi: 10.11993/j.issn.2096-3920.202205002

Pressure Sensor Error Compensation Algorithm Based on MEA-BP Neural Network

doi: 10.11993/j.issn.2096-3920.202205002
  • Received Date: 2022-05-10
  • Accepted Date: 2022-06-28
  • Rev Recd Date: 2022-06-09
  • Available Online: 2023-02-21
  • Piezoresistive pressure sensors are sensitive to environmental changes. Ambient temperature changes would produce thermal drift, which affects sensor performance. This study entailed the use of the mind evolutionary algorithm(MEA)-back propagation(BP) neural network algorithm to establish an error compensation model for piezoresistive pressure sensors. The model uses the MEA algorithm to optimize the initial weight and threshold of the neural network, which reduces the possibility of the training falling into local optimization owing to the uncertainty of the initial value. The Levenberg–Marquardt algorithm replaces the gradient descent method to accelerate the convergence speed of the neural network and increase the reliability of the compensation algorithm. The results of the simulation show that, compared with those of the BP neural network compensation algorithm and genetic algorithm(GA)-BP neural network, the expectation of the root mean square error of the MEA-BP algorithm is lower by 48.7% and 8.29%, respectively. The standard deviations are reduced to 5% and 4% of those of the BP and GA-BP neural networks, respectively. This demonstrates that the BP neural network compensation method optimized by the MEA algorithm can compensate for the influence of temperature more accurately and that the compensation result is more reliable.

     

  • loading
  • [1]
    孙以材, 刘玉玲, 孟庆浩, 等. 压力传感器的设计制造与应用[M]. 北京: 冶金工业出版社, 2000.
    [2]
    Aryafar M, Hamedi M, Ganjeh M M. A novel temperature compensated piezoresistive pressure sensor[J]. Measurement, 2015, 63: 25-29. doi: 10.1016/j.measurement.2014.11.032
    [3]
    丁华泽, 胡育昱, 魏智, 等. 基于最小二乘法的地磁传感器轻量级温补机制设计与实现[J]. 传感器与微系统, 2022, 41(2): 78-81.
    [4]
    李战, 冀邦杰, 国琳娜, 等. 光纤陀螺温度误差建模及补偿方法[J]. 鱼雷技术, 2008, 16(4): 15-18.

    Li Zhan, Ji Bangjie, Guo Linna, et al. Modeling and compensating method of temperature error for fiber-optic gyroscope[J]. Torpedo Technology, 2008, 16(4): 15-18.
    [5]
    胡永建. 一种超宽温度补偿高精度压力传感器设计[J]. 传感器世界, 2017, 23(11): 28-33.
    [6]
    张挺, 李红志, 兰卉, 等. 海洋专用高精度压力传感器温度特性及补偿算法研究[J]. 海洋技术学报, 2016, 35(6): 36-40.
    [7]
    段杰, 李辉, 陈自立, 等. 基于RBF与OS-ELM神经网络的AUV传感器在线故障诊断[J]. 水下无人系统学报, 2018, 26(2): 157-165.

    Duan Jie, Li Hui, Chen Zili, et al. Online fault diagnosis of AUV sensor based on RBF and OS-ELM neural networks[J]. Journal of Unmanned Undersea System, 2018, 26(2): 157-165.
    [8]
    Rath S K, Patra J C, Kot A C. An intelligent pressure sensor with self-calibration capability using artificial neural networks[C]//2000 International conference on systems, man and cybernetics. Nashville, TN, USA: IEEE, 2000,
    [9]
    李佳君, 卢文科. 用BP神经网络法对压力传感器进行温度补偿[J]. 工程与试验, 2015, 55(1): 66-69, 79.

    Li Jiajun, Lu Wenke. Temperature compensation of pressure sensor based on BP neural network[J]. Engineering and Test, 2015, 55(1): 66-69, 79.
    [10]
    郎琦. 基于RBF神经网络矿用红外甲烷传感器补偿方法研究[J]. 自动化与仪器仪表, 2021(3): 55-57.

    Lang Qi. Study on compensation method of mine infrared methane sensor based on RBF neural network[J]. Automation and Instrumentation, 2021(3): 55-57.
    [11]
    Yu J, Li J, Dai Q, et al. Temperature compensation and data fusion based on a multifunctional gas detector[J]. IEEE Transactions on instrumentation and measurement, 2015, 64(1): 204-11. doi: 10.1109/TIM.2014.2332242
    [12]
    Haykin S O. Neural networks and learning machines[M]. Upper Saddle River: Prentice Hall, 2009.
    [13]
    丛爽. 神经网络理论与应用[M]. 合肥: 中国科学技术大学出版社, 2017.
    [14]
    罗峥, 张学谦. 基于思维进化算法优化S-Kohonen神经网络的恶意域名检测模型[J]. 信息网络安全, 2020, 20(6): 82-89.

    Luo Zheng, Zhang Xueqian. A malicious domain name detection model based on S-Kohonen neural network optimized by evolutionary thinking algorithm[J]. Netinfo Security, 2020, 20(6): 82-89.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article Views(462) PDF Downloads(57) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return