
| Citation: | HUANG Baozhu, LI Daijin, HUANG Chuang, GU Jianxiao, LUO Kai. Effect of Material Density on the Tail-slapping Characteristics ofSupercavitating Projectiles[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 211-220. doi: 10.11993/j.issn.2096-3920.202204014 |
| [1] |
魏英杰, 何乾坤, 王聪, 等. 超空泡射弹尾拍问题研究进展[J]. 舰船科学技术, 2013, 35(1): 7-15.
Wei Yingjie, He Qiankun, Wang Cong, et al. Review of study on the tail-slap problems of supercavitating projectile[J]. Ship Science and Technology, 2013, 35(1): 7-15.
|
| [2] |
姜百汇, 马春勋, 刘乐华. 国外超空泡技术及其应用[J]. 飞航导弹, 2008(11): 20-24. doi: 10.16338/j.issn.1009-1319.2008.11.008
Jiang Baihui, Ma Chunxun, Liu Lehua. Foreign supercavitating technology and its application[J]. Aerodynamic Missile Journal, 2008(11): 20-24. doi: 10.16338/j.issn.1009-1319.2008.11.008
|
| [3] |
Savchenko Y N. Control of supercavitation flow and stability of supercavitating motion of bodies[C]//VKI Special Course on Supercavitating Flows. Brussels, Belgium: von Karman Institute for Fluid Dynamics, 2001.
|
| [4] |
李喜顺, 江玉峰. 重力对超空泡射弹稳定性的影响[J]. 四川兵工学报, 2011, 32(5): 43-44.
Li Xishun, Jiang Yufeng. Impact of gravity for stability of super-vacuole projectile[J]. Journal of Sichuan Ordnance, 2011, 32(5): 43-44.
|
| [5] |
May A. Water entry and the cavity-running behavior of missiles[R]. Arlington: Naval Sea Systems Command, 1975.
|
| [6] |
Rand R, Pratap R, Ramain D, et al. Impact dynamics of a supercavitating underwater projectile[C]//Proceedings of the 1997 ASME Design Engineering Technical Conferences. Sacramento, CA, US: ASME, 1997.
|
| [7] |
Savchenko Y N. Investigation of high-speed supercavitating underwater motion of bodies[C]// Proceedings of NATO-AGARD. Kiev: NAS-IHM, 1997: 1-12.
|
| [8] |
梁景奇, 徐保成, 王瑞, 等. 初速对高速射弹尾拍特性影响研究[J]. 弹箭与制导学报, 2020, 40(2): 130-134. doi: 10.15892/j.cnki.djzdxb.2020.02.032
Liang Jingqi, Xu Baocheng, Wang Rui, et al. Study on the influence of initial velocity on the characteristics of high speed projectile tail-slapping[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(2): 130-134. doi: 10.15892/j.cnki.djzdxb.2020.02.032
|
| [9] |
陈伟善, 郭则庆, 刘如石, 等. 空化器形状对超空泡射弹尾拍运动影响的数值研究[J]. 工程力学, 2020, 45(4): 1370-85.
Chen Weishan, Guo Zeqing, Liu Rushi, et al. Numerical simulation on the influence of cavitator shapes on the tail-slap of supercavitating projectiles[J]. Engineering Mechanics, 2020, 45(4): 1370-85.
|
| [10] |
赵成功, 王聪, 魏英杰, 等. 质心位置对超空泡射弹尾拍运动影响分析[J]. 北京航空航天大学学报, 2014, 40(12): 1754-60. doi: 10.13700/j.bh.1001-5965.2014.0014
Zhao Chenggong, Wang Cong, Wei Yingjie, et al. Analysis of the effect of mass center position on tailslap of supercavitating projectile[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(12): 1754-60. doi: 10.13700/j.bh.1001-5965.2014.0014
|
| [11] |
张浩. 基于波浪条件下射弹入水弹道特性研究[D]. 太原: 中北大学, 2021.
|
| [12] |
Zhao X, Lyu X, Da L I. Modeling of the tail slap for a supercavitating projectile[C]//2018 IEEE 8th International Conference on Underwater System Technology: Theory and Applications. Wuhan, China: IEEE, 2018.
|
| [13] |
蔡涛, 李强, 鹿麟, 等. 空化槽对弹丸水下运动特性的影响[J]. 兵器装备工程学报, 2020, 41(3): 36-40. doi: 10.11809/bqzbgcxb2020.03.007
Cai Tao, Li Qiang, Lu Lin, et al. Influence of cavitation groove on movement characteristics of projectile underwater[J]. Journal of Ordnance Equipment Engineering, 2020, 41(3): 36-40. doi: 10.11809/bqzbgcxb2020.03.007
|
| [14] |
Ping W, Jian H, Chen T. Stability analysis and control of supercavitation projectile[C]//2012 IEEE International Conference on Intelligent Control, Automatic Detection and High-End Equipment. Beijing, China: IEEE, 2012.
|
| [15] |
黄闯. 跨声速超空泡射弹的弹道特性研究[D]. 西安: 西北工业大学, 2017.
|
| [16] |
刘富强, 罗凯, 黄闯, 等. 并列超空泡射弹弹道特性研究[J]. 水下无人系统学报, 2020, 28(2): 202-208. doi: 10.11993/j.issn.2096-3920.2020.02.013
Liu Fuqiang, Luo Kai, Huang Chuang, et al. Study on ballistic characteristics of the parallel supercavitating projectiles[J]. Journal of Unmanned Undersea Systems, 2020, 28(2): 202-208. doi: 10.11993/j.issn.2096-3920.2020.02.013
|
| [17] |
Moin P. Progress in large eddy simulation of turbulent flows[C]//35th Aerospace Sciences Meeting and Exhibit. Stanford, CA: AIAA, 1997.
|
| [18] |
黄闯, 罗凯, 党建军, 等. 流域径向尺度对自然超空泡的影响规律[J]. 西北工业大学学报, 2015, 33(6): 936-941. doi: 10.3969/j.issn.1000-2758.2015.06.011
Huang Chuang, Luo Kai, Dang Jianjun, et al. Influence of flow field’s radial dimension on natural supercavity[J]. Journal of Northwestern Polytechnical University, 2015, 33(6): 936-941. doi: 10.3969/j.issn.1000-2758.2015.06.011
|
| [19] |
钱铖铖. 超空泡射弹高速入水数值模拟研究[D]. 南京: 南京理工大学, 2018.
|
| [20] |
张学伟. 水下超空泡射弹运动仿真与弹道特性分析[D]. 太原: 中北大学, 2017.
|
| [21] |
王瑞, 党建军, 姚忠, 等. 空化器锥角对射弹跨音速入水初期超空化流动影响研究[J]. 水下无人系统学报, 2019, 27(2): 200-205.
Wang Rui, Dang Jianjun, Yao Zhong, et al. Influence of cavitator cone angle on supercavitation flow of projectile in initial stage of transonic water-entry[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 200-205.
|
| [22] |
Hrubes J D. High-speed imaging of supercavitating underwater projectiles[J]. Experiments in Fluids, 2001, 30(1): 57-64. doi: 10.1007/s003480000135
|