
| Citation: | NAN Kaigang, JIANG Sheng, ZHANG Jinhua, CHENG Haiyan. CPG Motion Control for a Bionic Manta Ray Robot Fish Propelled by Flexible Pectoral Fin[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 201-210. doi: 10.11993/j.issn.2096-3920.202203009 |
| [1] |
范增, 王扬威, 刘凯, 等. 仿生机器鱼胸鳍波动与摆动融合推进机制建模及实验研究[J]. 水下无人系统学报, 2019, 27(2): 166-173.
Fan Zeng, Wang Yangwei, Liu Kai, et al. Modeling and experimental research of integrating propulsion mechanism of pectoral fin’s fluctuation and swing for the biomimetic robotic fish[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 166-173.
|
| [2] |
Breder C M. The locomotion of fishes[J]. Zoologica, 1926, 4: 159-297.
|
| [3] |
Xiong G, Lauder G V. Center of mass motion in swimming fish: effects of speed and locomotor mode during undulatory propulsion[J]. Zoology, 2014, 117(4): 269-281. doi: 10.1016/j.zool.2014.03.002
|
| [4] |
王田苗, 杨兴帮, 梁建宏. 中央鳍/对鳍推进模式的仿生自主水下机器人发展现状综述[J]. 机器人, 2013, 35(3): 352-362. doi: 10.3724/SP.J.1218.2013.00352
|
| [5] |
胡举喜, 吴均云, 田忠殿. 胸鳍推进仿生无人潜航器研究浅析[C]//鳌山论坛·2019 年水下无人系统技术高峰论坛论文集. 青岛: 《水下无人系统学报》编辑部, 2019.
|
| [6] |
Liu G, Ren Y, Zhu J, et al. Thrust producing mechanisms in ray-inspired underwater vehicle propulsion[J]. Theoretical and Applied Mechanics Letters, 2015, 5(1): 54-57. doi: 10.1016/j.taml.2014.12.004
|
| [7] |
Moored K W, Smith W, Hester J M, et al. Investigating the thrust production of a myliobatoid-inspired oscillating wing[J]. Advances in Science and Technology, 2008, 58: 25-30.
|
| [8] |
盛兆华, 杨朔. 仿鳐鱼水下航行器动态流体仿真[J]. 水下无人系统学报, 2021, 29(3): 308-312.
|
| [9] |
Zhou C, Low K H. Better endurance and load capacity: an improved design of manta ray robot: RoMan-Ⅱ[J]. Journal of Bionic Engineering, 2010, 7(3): 137-144.
|
| [10] |
李吉, 毕树生, 高俊, 等. 仿生蝠鲼机器鱼BH-RAY3的研制及水力实验[J]. 控制工程, 2010, 17(1): 127-130.
|
| [11] |
Gao J, Bi S, Xu Y, et al. Development and design of a robotic manta ray featuring flexible pectoral fins[C]//IEEE International Conference on Robotics and Biomimetics. Sanya: IEEE, 2008: 519-523.
|
| [12] |
Chew C M, Arastehfar S, Gunawan G, et al. Study of sweep angle effect on thrust generation of oscillatory pectoral fins[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Vancouver, BC, Canada: IEEE, 2017.
|
| [13] |
和岩辉, 胡桥, 王朝晖, 等. 基于CPG和模糊控制的机器鱼定向游动精确控制方法[J]. 水下无人系统学报, 2021, 29(1): 39-47.
He Yanhui, Hu Qiao, Wang Chaohui, et al. Precise control method for directional swimming of a robotic fish based on CPG and fuzzy control[J]. Journal of Unmanned Undersea Systems, 2021, 29(1): 39-47.
|
| [14] |
Matsuoka K. Mechanisms of frequency and pattern control in the neural rhythm generators[J]. 1987, 56(5-6): 345-353.
|
| [15] |
Shi R, Zhang X, Tian Y, et al. A CPG-based control method for the rolling locomotion of a desert spider[C]//Advanced Robotics & Its Social Impacts. Shanghai, China: IEEE, 2016.
|
| [16] |
汪明, 喻俊志, 谭民. 胸鳍推进型机器鱼的CPG控制及实现[J]. 机器人, 2010, 32(2): 248-255. doi: 10.13973/j.cnki.robot.2010.02.018
|
| [17] |
Zhou C, Low K H. On-line optimization of biomimetic undulatory swimming by an experiment-based approach[J]. Journal of Bionic Engineering, 2014, 11(2): 213-225. doi: 10.1016/S1672-6529(14)60042-1
|
| [18] |
Ijspeert A J, Crespi A, Ryczko D, et al. From swimming to walking with a salamander robot driven by a spinal cord model[J]. Science, 2007, 315(5817): 1416-1420. doi: 10.1126/science.1138353
|
| [19] |
Chen L, Qiao T, Bi S, et al. Modeling and simulation research on soft pectoral fin of a bionic robot fish inspired by manta ray[J]. Journal of Mechanical Engineering, 2020, 56(19): 182. doi: 10.3901/JME.2020.19.182
|
| [20] |
牛传猛, 毕树生, 蔡月日, 等. 胸鳍摆动推进仿生鱼的设计及水动力实验[J]. 机器人, 2014, 36(5): 535-543.
|