• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Volume 30 Issue 4
Sep  2022
Turn off MathJax
Article Contents
SHAO Zong-zhan, XIONG Yong, DAI Wen-liu. Method of Adaptability Assessment of an Intercept Missile in Challenging Marine Conditions[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 535-542. doi: 10.11993/j.issn.2096-3920.202202008
Citation: SHAO Zong-zhan, XIONG Yong, DAI Wen-liu. Method of Adaptability Assessment of an Intercept Missile in Challenging Marine Conditions[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 535-542. doi: 10.11993/j.issn.2096-3920.202202008

Method of Adaptability Assessment of an Intercept Missile in Challenging Marine Conditions

doi: 10.11993/j.issn.2096-3920.202202008
  • Received Date: 2022-02-24
  • Rev Recd Date: 2022-04-14
  • Available Online: 2022-09-06
  • The main mission of an intercept missile equipped on surface warships is to intercept incoming anti-ship torpedoes as a hard-kill countermeasure. After the intercept missile receives the ignition signal from the system, the engine ignites and the body of the intercept missile flies out of the launching tube. When the missile enters water, the acoustic fuse completes separation process by igniting the suspension device to separate the missile body, and the air collar inflates and floats. Finally, the missile body starts to operate normally when it is stably suspended. Therefore, whether the launch, flight, and water-entering separation processes of the intercept missile are normal significantly affects its operational effectiveness. However, there are a series of practical problems concerning the intercept missile test in challenging marine conditions, such as difficulties in organizing and implementing testing, product recovery, and obtaining test data measurement. According to the technical characteristics and operating environment of the equipment, this paper proposes the performance requirements that should be satisfied when using the intercept missile. A comprehensive assessment method combining experimental verification and simulation calculations is proposed for the assessment. Studies regarding whether the attack angle, water-entering overload, and connector stress performance of the intercept missile can satisfy the requirements of challenging marine conditions are described. The results show that the intercept missile can meet the performance requirements of challenging marine conditions in the aforementioned three aspects. The findings can provide technical support for making evaluation conclusions on the adaptability of intercept missiles in challenging marine conditions.

     

  • loading
  • [1]
    任磊, 贾跃, 李文哲. 悬浮式拦截弹作战仿真平台的设计与实现[J]. 电子质量, 2017(11): 43-46. doi: 10.3969/j.issn.1003-0107.2017.11.011

    Ren Lei, Jia Yue, Li Wen-zhe. The Design and Realization of the Suspended Depth-charge Combat Simulation Platform[J]. Electronics Quality, 2017(11): 43-46. doi: 10.3969/j.issn.1003-0107.2017.11.011
    [2]
    刘朝辉, 赵峰, 槐万景, 等. 基于仿真的深弹拦截鱼雷作战效能评估分析方法[J]. 火力与指挥控制, 2016, 41(1): 41-44. doi: 10.3969/j.issn.1002-0640.2016.01.010

    Liu Chao-hui, Zhao Feng, Huai Wan-jing, et al. Method to Evaluate Operational Effectiveness of Hovering Depth Charge Intercepting Torpedo Based on Simulation[J]. Fire Control & Command Control, 2016, 41(1): 41-44. doi: 10.3969/j.issn.1002-0640.2016.01.010
    [3]
    李翔, 毕世华, 陈阵. 舰船摇摆下舰载火箭弹初始扰动可能域研究[J]. 舰船科学技术, 2011, 33(12): 89-92. doi: 10.3404/j.issn.1672-7649.2011.12.021

    Li Xiang, Bi Shi-hua, Chen Zhen. Research on Presumable Range of Initial Disturbances of Ship-borne Rocket under Ship Swaying Motion[J]. Ship Science and Technology, 2011, 33(12): 89-92. doi: 10.3404/j.issn.1672-7649.2011.12.021
    [4]
    任磊, 贾跃, 施帆. 基于相对运动考虑海流影响的拦截弹布放方法[J]. 数字海洋与水下攻防, 2019, 2(2): 66-70.

    Ren Lei, Jia Yue, Shi Fan. Laying Method of Interceptor Considering Ocean Current Influence Based on Relative Motion[J]. Digital Ocean & Underwater Warfare, 2019, 2(2): 66-70.
    [5]
    孙为康, 史军, 邵文熙, 等. 基于多输入海况条件下的船舶运动模型分析[J]. 价值工程, 2019(36): 220-223. doi: 10.14018/j.cnki.cn13-1085/n.2019.36.094

    Sun Wei-kang, Shi Jun, Shao Wen-xi, et al. Analysis of Ship Motion Model Based on Multiple Input Sea Conditions[J]. Value Engineering, 2019(36): 220-223. doi: 10.14018/j.cnki.cn13-1085/n.2019.36.094
    [6]
    赵峰, 胡伟文, 郭云伟, 等. 悬浮式深弹的射弹散布模型及其精度分析[J]. 火力与指挥控制, 2014, 39(1): 33-36.

    Zhao Feng, Hu Wei-wen, Guo Yun-wei, et al. Impact Area Distribution Model and Accuracy Analysis of Hovering Depth Charge[J]. Fire Control & Command Control, 2014, 39(1): 33-36.
    [7]
    赵峰, 胡伟文, 朱朝峰, 等. 悬浮式深弹拦截鱼雷作战效能的因素分析[J]. 海军工程大学学报, 2013, 25(6): 18-23.

    Zhao Feng, Hu Wei-wen, Zhu Chao-feng, et al. Analysis of Factors Affecting Operational Effectiveness of Hovering Depth Charge in Intercepting Torpedo[J]. Journal of Naval University of Engineering, 2013, 25(6): 18-23.
    [8]
    陈俊锋, 朱军, 黄昆仑. 规则波浪中舰船不规则摇荡运动计算分析[J]. 舰船科学技术, 2011, 33(1): 41-44. doi: 10.3404/j.issn.1672-7649.2011.01.007

    Chen Jun-feng, Zhu Jun, Huang Kun-lun. Study on the Irregular Oscillatory Motions for a Ship in Regular Waves[J]. Ship Science and Technology, 2011, 33(1): 41-44. doi: 10.3404/j.issn.1672-7649.2011.01.007
    [9]
    韩子鹏. 弹箭外弹道学[M]. 北京: 国防工业出版社, 2012.
    [10]
    孙慧玲, 胡伟文, 宋业新. 悬浮式深水炸弹综合防御鱼雷作战仿真系统确认方法[J]. 兵工学报, 2020, 41(12): 2523-2529. doi: 10.3969/j.issn.1000-1093.2020.12.018

    Sun Hui-ling, Hu Wei-wen, Song Ye-xin. Accreditation Method for Integrated Anti-torpedo Combat Simulation System of Suspended Depth Charge[J]. Acta Armamentarii, 2020, 41(12): 2523-2529. doi: 10.3969/j.issn.1000-1093.2020.12.018
    [11]
    姚奉亮, 贾跃, 丁贝. 悬浮式深弹拦截不确定型鱼雷作战模型研究[J]. 鱼雷技术, 2011, 19(1): 63-67.

    Yao Feng-liang, Jia Yue, Ding Bei. Operational Model for Intercepting Uncertain Type of Torpedo with Hovering Depth Charge[J]. Torpedo Technology, 2011, 19(1): 63-67.
    [12]
    Meng J, Wang Y J, Cai L, et al. Research on the Combination of Underwater Acoustic Countermeasure Equipment against Torpedo[C]//International Conference on Mechanical Engineering and Electrical Systems. Paris: EDP Sciences, 2016.
    [13]
    吴海平, 袁志勇, 张翼超. 悬浮式拦截弹拦截鱼雷概率分析[J]. 船电技术, 2009, 29(4): 26-29. doi: 10.3969/j.issn.1003-4862.2009.04.007

    Wu Hai-ping, Yuan Zhi-yong, Zhang Yi-chao. The Probability of Intercepting Torpedo Using Suspended Depth Charge[J]. Marine Electric Electronic Engineering, 2009, 29(4): 26-29. doi: 10.3969/j.issn.1003-4862.2009.04.007
    [14]
    房毅, 田恒斗, 侯宝娥. 悬浮式深弹反鱼雷武器仿真试验系统设计[J]. 兵器装备工程学报, 2016, 37(6): 79-82. doi: 10.11809/scbgxb2016.06.019

    Fang Yi, Tian Heng-dou, Hou Bao-e. Simulation Test System Design of Hovering Depth Charge Anti-Torpedo Weapon[J]. Journal of Ordnance Equipment Engineering, 2016, 37(6): 79-82. doi: 10.11809/scbgxb2016.06.019
    [15]
    任磊, 贾跃, 李文哲. 舰载软硬防雷武器综合对抗智能鱼雷方案研究[J]. 兵工学报, 2015, 36(12): 2336-2341. doi: 10.3969/j.issn.1000-1093.2015.12.017

    Ren Lei, Jia Yue, Li Wen-zhe. Research on Comprehensive Scheme of Shipboard Hard and Soft Torpedo Defense Weapons against Intelligent Torpedoes[J]. Acta Armamentarii, 2015, 36(12): 2336-2341. doi: 10.3969/j.issn.1000-1093.2015.12.017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article Views(153) PDF Downloads(26) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return