• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 31 Issue 2
Apr  2023
Turn off MathJax
Article Contents
LIU Fuqiang, ZHOU Linyi, SUN Yuan, YAN Kao. Water-jet Propulsion Characteristics of Vehicle Planing[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 305-315. doi: 10.11993/j.issn.2096-3920.202201007
Citation: LIU Fuqiang, ZHOU Linyi, SUN Yuan, YAN Kao. Water-jet Propulsion Characteristics of Vehicle Planing[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 305-315. doi: 10.11993/j.issn.2096-3920.202201007

Water-jet Propulsion Characteristics of Vehicle Planing

doi: 10.11993/j.issn.2096-3920.202201007
  • Received Date: 2022-01-25
  • Rev Recd Date: 2022-04-11
  • Available Online: 2022-09-26
  • This study employed the shear stress transport(SST) k-ω turbulence model, multiple reference frame(MRF) model, and ideal pump model to construct a numerical simulation model of water-jet propulsion for vehicle planing. The model was implemented in STAR-CCM+ software, and its feasibility was verified. On the basis of the ideal pump model, the influent characteristics of the inner flow channel were simulated for one side with the characteristic pressure difference of the ideal pump and water absorption capacity of the axial flow pump. The flow field and hydrodynamic characteristics of vehicle planing with different pressure differences and immersion depths were studied using numerical simulation. The results show that the ideal pump model can simulate the water absorption of the axial flow pump well. A comparison of the hydrodynamic characteristics of the inner passage of the vehicle under different pressure differences reveals that with an increase in pressure, the inner passage drag increases significantly, and the inner passage lift force remains nearly unchanged. The numerical simulations of planing at different immersion depths reveal that for immersion depths of the inlet greater than 20 mm, the influent effect of the inner flow passage would no longer be impacted by immersion depth. These results provide a reference for water-jet propulsion engineering applications of vehicle planing.

     

  • loading
  • [1]
    茹呈瑶. 现代鱼雷、水雷技术发展研究[J]. 舰船科学技术, 2003, 25(4): 42-43.
    [2]
    张宝华, 杜选民. 水面舰艇鱼雷防御系统综述[J]. 船舶工程, 2003, 25(4): 17-19. doi: 10.3969/j.issn.1000-6982.2003.04.004
    [3]
    马玲. 各国海军强调鱼雷的浅水使用[J]. 鱼雷技术, 1998, 6(1): 55-60.
    [4]
    王立祥. 喷水推进及喷水推进泵[J]. 通用机械, 2007(10): 12-15. doi: 10.3969/j.issn.1671-7139.2007.10.003
    [5]
    孔庆福, 吴家明, 贾野, 等. 舰船喷水推进技术研究[J]. 舰船科学技术, 2004, 26(3): 28-30.
    [6]
    吴玉玮. 某游艇喷水推进系统设计及性能分析[D]. 镇江: 江苏科技大学, 2015.
    [7]
    郑昆山. 基于喷水矢量推进的水下机器人设计与研究[D]. 长沙: 国防科技大学, 2010.
    [8]
    金平仲. 船舶喷水推进[M]. 北京: 国防工业出版社, 1986.
    [9]
    杨修水. 2010, 世界大洋里的新生代——核潜艇篇[J]. 当代海军, 2004(9): 50-55.
    [10]
    乔宏, 韩新波, 伊进宝, 等. 固体推进剂涡轮喷水发动机工作性能研究[J]. 鱼雷技术, 2012, 20(2): 120-124.
    [11]
    Van T. Waterjet-hull interaction[D]. Delft, The Netherlands: Delft University of Technology, 1996.
    [12]
    Dang J, Liu R W, Pouw C. Waterjet system performance and cavitation test procedures[C]//Proceedings of the third international symposium on marine propulsors. Launceston, Australia: Australian Maritime College, University of Tasmania, 2013: 87-96.
    [13]
    Park W G, Jin H J, Chun H H, et al. Numerical flow and performance analysis of waterjet propulsion system[J]. Ocean Engineering, 2005, 32(14-15): 1740-1761. doi: 10.1016/j.oceaneng.2005.02.004
    [14]
    Park W G, Yun H S, Chun H H, et al. Numerical flow simulation of flush type intake duct of waterjet[J]. Ocean Engineering, 2005, 32(17): 2107-2120.
    [15]
    苑龙飞, 罗凯, 蒋彬, 等. 喷水推进系统在浅水高速工况下适应性问题的数值分析[J]. 水动力学研究与进展A辑, 2016, 31(2): 225-231.
    [16]
    刘成勇. 水下航行器喷水推进系统浅水性能研究[D]. 西安: 西北工业大学, 2018.
    [17]
    Roohi E, Pendar M, Rahimi A. Simulation of three-dimensional cavitation behind a disk using various turbulence and mass transfer models[J]. Applied Mathematical Modelling, 2016, 40(1): 542-564. doi: 10.1016/j.apm.2015.06.002
    [18]
    黄闯. 跨声速超空泡射弹的弹道特性研究[D]. 西安: 西北工业大学, 2017.
    [19]
    Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149
    [20]
    Issa R, Luo J Y, Gosman D. Prediction of impeller induced flows in mixing vessels using multiple frames of reference[C]//4th European Conf on Mixing, IMechE Symposium Series No 136. Cambridge, UK: 1994.
    [21]
    魏海鹏, 符松. 不同多相流模型在航行体出水流场数值模拟中的应用[J]. 振动与冲击, 2015, 34(4): 48-52.
    [22]
    Timothy Y, Michael M, Len I, et al. Investigation of cylinder planing on a flat free surface[C]//11th International Conference on Fast sea Transportation(FAST). Honolulu, Hawaii, USA: American Society of Naval Engineers, 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Article Metrics

    Article Views(552) PDF Downloads(57) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return