• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Volume 30 Issue 3
Jul  2022
Turn off MathJax
Article Contents
SUN Yuan-xiang, CHEN Yan-wu. Research Progress in Damage and Protection of Surface Ship’s Double-Layer Structure Subjected to Underwater Explosion Load[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 342-353. doi: 10.11993/j.issn.2096-3920.2022.03.010
Citation: SUN Yuan-xiang, CHEN Yan-wu. Research Progress in Damage and Protection of Surface Ship’s Double-Layer Structure Subjected to Underwater Explosion Load[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 342-353. doi: 10.11993/j.issn.2096-3920.2022.03.010

Research Progress in Damage and Protection of Surface Ship’s Double-Layer Structure Subjected to Underwater Explosion Load

doi: 10.11993/j.issn.2096-3920.2022.03.010
  • Received Date: 2022-02-23
  • Rev Recd Date: 2022-05-16
  • Available Online: 2022-05-25
  • Research on the damage and protection of surface ship double-layer structures subjected to underwater explosion loads can provide support for the improvement of ship protection capabilities and design of new weapons. Domestic and foreign research progress in terms of experimental research, theoretical research, and numerical simulations is systematically reviewed. The influences of parameters such as the medium and supporting structure between double-layer plates, plate spacing, and plate thickness on damage and protection effects are summarized. Major theoretical research results for double-layer plate damage caused by shock wave transmission and energy absorption are also summarized. Finally, future research directions are discussed.

     

  • loading
  • [1]
    Klaseboer E, Hung K C, Wang C, et al. Experimental and Numerical Investigation of the Dynamics of an Underwater Explosion Bubble Near a Resilient/Rigid Structure[J]. Journal of Fluid Mechanics, 2005, 537: 387-413. doi: 10.1017/S0022112005005306
    [2]
    Liu M B, Liu G R, Lam K Y, et al. Meshfree Particle Simulation of the Detonation Process for High Explosives in Shaped Charge Unlined Cavity Configurations[J]. Shock Waves, 2003, 12(6): 509-520. doi: 10.1007/s00193-003-0185-2
    [3]
    Geers T L, Hunter K S. An Integrated Wave-Effects Model for an Underwater Explosion Bubble[J]. The Journal of the Acoustical Society of America, 2002, 111(4): 1584-1601. doi: 10.1121/1.1458590
    [4]
    Li Y J, Pan J Q, Li G H, et al. Experimental Study of Ship Whipping Induced by Underwater Explosive Bubble[J]. Journal of Ship Mechanics, 2001, 5(6): 75-83.
    [5]
    Wang C, Khoo B C. An Indirect Boundary Element Method for Three-Dimensional Explosion Bubbles[J]. Journal of Computational Physics, 2004, 194(2): 451-480. doi: 10.1016/j.jcp.2003.09.011
    [6]
    Zhang Y L, Yeo K S, Khoo B C, et al. 3D Jet Impact and Toroidal Bubbles[J]. Journal of Computational Physics, 2001, 166(2): 336-360. doi: 10.1006/jcph.2000.6658
    [7]
    刘建湖. 舰船非接触水下爆炸动力学的理论与应用[D]. 无锡: 中国船舶科学研究中心, 2002.
    [8]
    陈辉, 李玉节. 一种计算水下爆炸冲击波载荷在双层板结构中传递规律的简单方法[J]. 现代振动与噪声技术, 2010, 8: 149-154.
    [9]
    张伦平, 张晓阳, 潘建强, 等. 多舱防护结构水下接触爆炸吸能研究[J]. 船舶力学, 2011, 15(8): 921-929. doi: 10.3969/j.issn.1007-7294.2011.08.013

    Zhang Lun-ping, Zhang Xiao-yang, Pan Jian-qiang, et al. Energy Research about Multicamerate Defence Structure Subjected to Underwater Contact Explosion[J]. Journal of Ship Mechanics, 2011, 15(8): 921-929. doi: 10.3969/j.issn.1007-7294.2011.08.013
    [10]
    Yao X, Liang D, Xu W. Research on the Simulation of Anti-shock Capability of Double Shell[J]. Journal of Harbin Engineering University, 2004(3): 267-273.
    [11]
    姚熊亮, 梁德利, 许维军. 结构参数变化对双层圆柱壳冲击响应的影响[J]. 哈尔滨工程大学学报, 2006, 27(4): 477-483. doi: 10.3969/j.issn.1006-7043.2006.04.001

    Yao Xiong-liang, Liang De-li, Xu Wei-jun. The Effect of Changing Structure Parameter on Impulse Response of Double Cylinder Shell Structure[J]. Journal of Harbin Engineering University, 2006, 27(4): 477-483. doi: 10.3969/j.issn.1006-7043.2006.04.001
    [12]
    Zhang Z, Wang C, Xu W, et al. Application of a New Type of Annular Shaped Charge in Penetration into Underwater Double-hull Structure[J]. International Journal of Impact Engineering, 2022, 159: 104057. doi: 10.1016/j.ijimpeng.2021.104057
    [13]
    Huang W, Jia B, Zhang W, et al. Dynamic Failure of Clamped Metallic Circular Plates Subjected to Underwater Impulsive Loads[J]. International Journal of Impact Engineering, 2016, 94: 96-108. doi: 10.1016/j.ijimpeng.2016.04.006
    [14]
    Srinivas K A, Umapathi G K, Venkata K R, et al. Blast Loading of Underwater Targets-A Study through Explosion Bulge Test Experiments[J]. International Journal of Impact Engineering, 2015, 76: 189-195. doi: 10.1016/j.ijimpeng.2014.09.007
    [15]
    Hawass A, Mostafa H, Elbeih A. Multi-layer Protective Armour for Underwater Shock Wave Mitigation[J]. Defence Technology, 2015(4): 338-343.
    [16]
    张振华, 王乘, 黄玉盈, 等. 舰船底部液舱结构在水下爆炸作用下的动态响应实验研究[J]. 爆炸与冲击, 2007, 27(5): 431-437. doi: 10.3321/j.issn:1001-1455.2007.05.009

    Zhang Zhen-hua, Wang Cheng, Huang Yu-ying, et al. Experiment Research of the Dynamic Response of Fluid Cabin in the Bottom of Warship Subjected to Underwater Explosion[J]. Explosion and Shock Waves, 2007, 27(5): 431-437. doi: 10.3321/j.issn:1001-1455.2007.05.009
    [17]
    Schiffer A, Tagarielli V L. The One-dimensional Response of a Water-filled Double Hull to Underwater Blast: Experiments and Simulations[J]. International Journal of Impact Engineering, 2014, 63: 177-187. doi: 10.1016/j.ijimpeng.2013.08.011
    [18]
    Huang X, Hu H, Zhang A, et al. Simulation of the Early Stage Water Flooding through an Opening Using Boundary Element Method[J]. Ocean Engineering, 2019, 186: 106086. doi: 10.1016/j.oceaneng.2019.05.068
    [19]
    贺铭, 张阿漫, 刘云龙. 近场水下爆炸气泡与双层破口结构的相互作用[J]. 爆炸与冲击, 2020, 40(11): 40-50.

    He Ming, Zhang A-man, Liu Yun-long. Interaction of the Underwater Explosion Bubbles and Nearby Double-layer Structures with Circular Holes[J]. Explosion and Shock Waves, 2020, 40(11): 40-50.
    [20]
    王诗平, 张阿漫, 刘云龙, 等. 圆形破口附近气泡动态特性实验研究[J]. 物理学报, 2013, 62(6): 346-352.

    Wang Shi-ping, Zhang A-man, Liu Yun-long, et al. Experimental Research on Bubble Dynamics Near Circular Hole of Plate[J]. Chinese Physical Society, 2013, 62(6): 346-352.
    [21]
    徐定海, 盖京波, 王善, 等. 防护模型在接触爆炸作用下的破坏[J]. 爆炸与冲击, 2008, 28(5): 476-480.

    Xu Ding-hai, Gai Jing-bo, Wang Shan, et al. Deformation and Failure of Layered Defense Models Subjected to Contact Explosive Load[J]. Explosion and Shock Waves, 2008, 28(5): 476-480.
    [22]
    Zhang J, Shi X H, Guedes S C. Experimental Study on the Response of Multi-layered Protective Structure Subjected to Underwater Contact Explosions[J]. International Journal of Impact Engineering, 2017, 100: 23-34. doi: 10.1016/j.ijimpeng.2016.10.004
    [23]
    朱锡, 张振华, 刘润泉, 等. 水面舰艇舷侧防雷舱结构模型抗爆试验研究[J]. 爆炸与冲击, 2004, 24(2): 133-139. doi: 10.3321/j.issn:1001-1455.2004.02.006

    Zhu Xi, Zhang Zhen-hua, Liu Run-quan, et al. Experimental Study on the Explosion Resistance of Cabin Near Shipboard of Surface Warship Subjected to Underwater Contact Explosion[J]. Explosion and Shock Waves, 2004, 24(2): 133-139. doi: 10.3321/j.issn:1001-1455.2004.02.006
    [24]
    陈莹玉. 水下近场爆炸时不同结构形式的壁压与毁伤特性试验研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
    [25]
    Chen Y Y, Yao X L, Cui X W, et al. Experimental Investigation of Bubble Dynamics Near a Double-Layer Plate with a Circular Hole[J]. Ocean Engineering, 2021, 239: 109715. doi: 10.1016/j.oceaneng.2021.109715
    [26]
    杨棣, 姚熊亮, 张玮, 等. 水下近场及接触爆炸作用下双层底结构损伤试验研究[J]. 振动与冲击, 2015, 34(2): 161-165.

    Yang Di, Yao Xiong-liang, Zhang Wei, et al. Experimental on Double Bottom’s Structural Damage under Underwater Near-Field and Contact Explosions[J]. Journal of Vibration and Shock, 2015, 34(2): 161-165.
    [27]
    杨棣. 水下爆炸下舰艇典型结构塑性损伤研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
    [28]
    陈娟, 吴国民. 船底双层板架结构水下近场爆炸试验[J]. 中国舰船研究, 2019, 14(S1): 143-150.

    Chen Juan, Wu Guo-min. Underwater Near-Field Explosion Experiment of Double-wall Bottom Grillage[J]. Chinese Journal of Ship Research, 2019, 14(S1): 143-150.
    [29]
    Li Y, Ren X, Zhao T, et al. Dynamic Response of Stiffened Plate under Internal Blast: Experimental and Numerical Investigation[J]. Marine Structures, 2021, 77: 102957. doi: 10.1016/j.marstruc.2021.102957
    [30]
    焦立启, 侯海量, 陈鹏宇, 等. 爆炸冲击载荷下固支单向加筋板的动响应及破损特性研究[J]. 兵工学报, 2019, 40(3): 592-600. doi: 10.3969/j.issn.1000-1093.2019.03.019

    Jiao Li-qi, Hou Hai-liang, Chen Peng-yu, et al. Research on Dynamic Response and Damage Characteristics of Fixed Supported One-way Stiffened Plates under Blast Loading[J]. Acta Armamentarii, 2019, 40(3): 592-600. doi: 10.3969/j.issn.1000-1093.2019.03.019
    [31]
    Wu J, Chong J, Long Y, et al. Experimental Study on the Deformation and Damage of Cylindrical Shell-Water-Cylindrical Shell Structures Subjected to Underwater Explosion[J]. Thin-Walled Structures, 2018, 127: 654-665. doi: 10.1016/j.tws.2018.03.002
    [32]
    苏标, 姚熊亮, 孙龙泉, 等. 水下接触爆炸作用下双层加筋板架结构的损伤特征[J]. 兵工学报, 2021, 42(S1): 127-134.

    Su Biao, Yao Xiong-liang, Sun Long-quan, et al. Damage Characteristics of Double-layer Stiffened Shell Subjected to Underwater Contact Explosion[J]. Acta Armamentarii, 2021, 42(S1): 127-134.
    [33]
    Cole R H. Underwater Explosion[M]. New Jersey: Princeton University Press, 1948.
    [34]
    Zamyshlyayev B V, Yakovlev Y S. Dynamic Loads Accompanying an Underwater Explosion[M]. Sudostroyeniye: Leningard, 1967.
    [35]
    Taylor G I. The Pressure and Impulse of Submarine Explosion Waves on Plates[M]. Cambridge: Cambridge University Press, 1941.
    [36]
    李玉节, 李国华, 赵本立, 等. 双层壳体对水下爆炸作用的影响研究[J]. 船舶力学, 2006, 10(5): 127-134. doi: 10.3969/j.issn.1007-7294.2006.05.018

    Li Yu-jie, Li Guo-hua, Zhao Ben-li, et al. Influence of Double Hull Structure on the Effects of Underwater Explosion[J]. Journal of Ship Mechanics, 2006, 10(5): 127-134. doi: 10.3969/j.issn.1007-7294.2006.05.018
    [37]
    Liu Z K, Young Y L. Transient Response of Submerged Plates Subject to Underwater Shock Loading: An Analytical Perspective[J]. Journal of Applied Mechanics-Transactions of the Asme, 2008, 75(4): 44504-44508. doi: 10.1115/1.2871129
    [38]
    盖京波. 舰船结构在爆炸冲击载荷作用下的局部破坏研究[D]. 哈尔滨: 哈尔滨工程大学, 2005.
    [39]
    Chen Y, Yao X, Xiao W. An Analytical Solution for Dynamic Response of the Plate with Different Impedances Subjected to Underwater Explosion[J]. China Ocean Engineering, 2016, 30(3): 329-342. doi: 10.1007/s13344-016-0022-x
    [40]
    李世铭. 舰船水下接近爆炸多层结构毀伤特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
    [41]
    Chen Y, Yao X, Xiao W. Analytical Models for the Response of the Double-bottom Structure to Underwater Explosion Based on the Wave Motion Theory[J]. Shock and Vibration, 2016(5): 1-21.
    [42]
    罗泽立, 周章涛, 毛海斌, 等. 水下爆炸强冲击波与平板结构相互作用的理论分析方法[J]. 高压物理学报, 2017, 31(4): 443-452. doi: 10.11858/gywlxb.2017.04.014

    Luo Ze-li, Zhou Zhang-tao, Mao Hai-bin, et al. Theoretical Analysis of the Interaction between the Plate Structure and Strong Shock Wave in Underwater Explosion[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 443-452. doi: 10.11858/gywlxb.2017.04.014
    [43]
    Ghoshal R, Mitra N. Non-contact Near-field Underwater Explosion Induced Shock-wave Loading of Submerged Rigid Structures: Nonlinear Compressibility Effects in Fluid Structure Interaction[J]. Journal of Applied Physics, 2012, 112(2): 24911. doi: 10.1063/1.4737778
    [44]
    黄祥兵, 朱锡, 刘勇. 大型水面舰艇舷侧水下防雷舱吸能结构论证设计[J]. 海军工程大学学报, 2000(3): 61-65. doi: 10.3969/j.issn.1009-3486.2000.03.014

    Huang Xiang-bin, Zhu Xi, Liu Yong. Design of the Energy Absorbing Structure of Underwater Torpedo Defence Cabin of Major Surface Ships[J]. Journal of Naval University of Engineering, 2000(3): 61-65. doi: 10.3969/j.issn.1009-3486.2000.03.014
    [45]
    Rajendran R, Narasimhan K. Damage Prediction of Clamped Circular Plates Subjected to Contact Underwater Explo- sion[J]. International Journal of Impact Engineering, 2001, 25(4): 373-386. doi: 10.1016/S0734-743X(00)00051-8
    [46]
    吴有生, 彭兴宁, 赵本立. 爆炸载荷作用下舰船板架的变形与破损[J]. 中国造船, 1995, 36(4): 55-61.

    Wu You-sheng, Peng Xing-ning, Zhao Ben-li. Plastic Deformation and Damage of Naval Panels Subjected to Explosion Loading[J]. Shipbuilding of China, 1995, 36(4): 55-61.
    [47]
    唐献述, 龙源, 王树民, 等. 接触爆炸作用下板的塑性变形分析与实验[J]. 解放军理工大学学报(自然科学版), 2006, 7(3): 242-246.

    Tang Xian-shu, Long Yuan, Wang Shu-min, et al. Experimental and Theoretical Research on Plastic Deformation of Plates Caused by Contact Blasting[J]. Journal of PLA University of Science and Technology, 2006, 7(3): 242-246.
    [48]
    朱锡, 刘燕红, 张振中, 等. 非接触爆炸载荷作用下舰船板架的塑性动力响应[J]. 武汉造船, 1998(6): 3-5.
    [49]
    方斌, 朱锡, 张振华. 水下爆炸冲击波载荷作用下船底板架的塑性动力响应[J]. 哈尔滨工程大学学报, 2008, 29(4): 326-331. doi: 10.3969/j.issn.1006-7043.2008.04.002

    Fang Bin, Zhu Xi, Zhang Zhen-hua. Plastic Dynamic Response of Ship Hull Grillage to Underwater Blast Loading[J]. Journal of Harbin Engineering University, 2008, 29(4): 326-331. doi: 10.3969/j.issn.1006-7043.2008.04.002
    [50]
    牟金磊, 朱锡, 张振华, 等. 爆炸冲击作用下加筋板结构变形研究[J]. 海军工程大学学报, 2007, 19(6): 12-16. doi: 10.3969/j.issn.1009-3486.2007.06.003

    Mou Jin-lei, Zhu Xi, Zhang Zhen-hua, et al. A Study on Deformation of Blast-loaded Stiffened Plates[J]. Journal of Naval University of Engineering, 2007, 19(6): 12-16. doi: 10.3969/j.issn.1009-3486.2007.06.003
    [51]
    朱锡, 冯文山. 爆炸载荷作用下的船用吸能防护结构[J]. 海军工程学院学报, 1993(1): 1-7.

    Zhu Xi, Feng Wen-shan. The Energy Absorbing Protection Structure of Ship under the Explosion Loading[J]. Journal of Naval Academy of Engineering, 1993(1): 1-7.
    [52]
    Wierzbicki T. Petalling of Plates under Explosive and Impact Loading[J]. International Journal of Impact Engineering, 1999, 22(9): 935-954.
    [53]
    张振华, 朱锡. 刚塑性板在柱状炸药接触爆炸载荷作用下的花瓣开裂研究[J]. 船舶力学, 2004, 8(5): 113-119. doi: 10.3969/j.issn.1007-7294.2004.05.015

    Zhang Zhen-hua, Zhu Xi. Petaling of Rigid Plastic Plate under Contact Explosive Loading of Cylindrical Dynamite[J]. Journal of Ship Mechanics, 2004, 8(5): 113-119. doi: 10.3969/j.issn.1007-7294.2004.05.015
    [54]
    陈卫东, 王飞, 陈浩. 舰船舷侧结构水下抗爆试验和机理研究[J]. 中国造船, 2009, 50(3): 65-73. doi: 10.3969/j.issn.1000-4882.2009.03.008

    Chen Wei-dong, Wang Fei, Chen Hao. Research on Blast Resistance Mechanism of Warship Broadside Defensive Structure Subjected to Underwater Contact Explosion[J]. Shipbuilding of China, 2009, 50(3): 65-73. doi: 10.3969/j.issn.1000-4882.2009.03.008
    [55]
    朱锡, 梅志远, 徐顺棋, 等. 高速破片侵彻舰用复合装甲模拟实验研究[J]. 兵工学报, 2003, 24(4): 530-533. doi: 10.3321/j.issn:1000-1093.2003.04.023

    Zhu Xi, Mei Zhi-yuan, Xu Shun-qi, et al. Experimental Research on the Penetration of High-velocity Fragmenis in Composite Warship Armor[J]. Acta Armamentarii, 2003, 24(4): 530-533. doi: 10.3321/j.issn:1000-1093.2003.04.023
    [56]
    Stepka F S, Morse C R, Dengler R P. Investigation of Characteristics of Pressure Waves Generated in Water Filled Tanks Impacted by High-Velocity Projectiles[R]. Washington: NASA, 1965.
    [57]
    Borg J P, Cogar J R, Tredway S, et al. Damage Resulting from a High-speed Projectile Impacting a Liquid-filled Metal Tank[C]//10th International Conference on Computational Methods and Experimental Measurements. Alicante, Spain: 2001.
    [58]
    孔祥韶, 吴卫国, 李俊, 等. 爆炸破片对防护液舱的穿透效应[J]. 爆炸与冲击, 2013, 33(5): 471-478. doi: 10.3969/j.issn.1001-1455.2013.05.004

    Kong Xiang-shao, Wu Wei-guo, Li Jun, et al. Effects of Explosion Fragments Penetrating Defensive Liquid-filled Cabins[J]. Explosion and Shock Waves, 2013, 33(5): 471-478. doi: 10.3969/j.issn.1001-1455.2013.05.004
    [59]
    Batchelor G K. An Introduction to fluid dynamics[M]. Cambridge: Cambridge University Press, 1967.
    [60]
    沈晓乐, 朱锡, 侯海量, 等. 高速破片侵彻防护液舱试验研究[J]. 中国舰船研究, 2011, 6(3): 12-15. doi: 10.3969/j.issn.1673-3185.2011.03.003

    Shen Xiao-le, Zhu Xi, Hou Hai-liang, et al. Experimental Study on Penetration Properties of High Velocity Fragment into Safety Liquid Cabin[J]. Chinese Journal of Ship Research, 2011, 6(3): 12-15. doi: 10.3969/j.issn.1673-3185.2011.03.003
    [61]
    张阿漫, 李卓. 舰船舷侧防护水舱在水下爆炸载荷作用下的数值模拟研究[C]//第三届全国舰艇抗冲击技术交流会. 哈尔滨: [s.n.], 2009.
    [62]
    杜志鹏, 李晓彬, 夏利娟, 等. 舰船防护水舱在接近爆炸载荷作用下响应的理论研究[J]. 船舶力学, 2007, 11(1): 119-127. doi: 10.3969/j.issn.1007-7294.2007.01.015

    Du Zhi-peng, Li Xiao-bin, Xia Li-juan, et al. Theory Research on the Response of the Warship Protective Tank under Near-by Explosion[J]. Journal of Ship Mechanics, 2007, 11(1): 119-127. doi: 10.3969/j.issn.1007-7294.2007.01.015
    [63]
    Barras G, Souli M, Aquelet N, et al. Numerical Simulation of Underwater Explosions Using an ALE Method. The Pulsating Bubble Phenomena[J]. Ocean Engineering, 2012, 41: 53-66. doi: 10.1016/j.oceaneng.2011.12.015
    [64]
    初文华, 明付仁, 张键. 三维SPH算法在冲击动力学中的应用[M]. 北京: 科学出版社, 2017.
    [65]
    Geers T. Doubly Asymptotic Approximations for Transient Motions of Submerged Structures[J]. Journal of Acoustic Society of America, 1978, 64: 1500-1508. doi: 10.1121/1.382093
    [66]
    Geers T L, Zhang P. Doubly Asymptotic Approximations for Submerged Structures with Internal Fluid Volumes: Formulation[J]. Journal of Applied Mechanics, 1994, 61: 893-899. doi: 10.1115/1.2901574
    [67]
    肖巍, 张阿漫, 汪玉. 具有内域的双层加筋圆柱壳动响应特性[J]. 力学学报, 2014, 46(1): 120-127. doi: 10.6052/0459-1879-13-196

    Xiao Wei, Zhang A-man, Wang Yu. Dynamic Response of Double Ring-Stiffened Cylindrical Shell with Internal Fluid[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 120-127. doi: 10.6052/0459-1879-13-196
    [68]
    Liu G Z, Liu J H, Wang J, et al. A Numerical Method for Double-plated Structure Completely Filled with Liquid Subjected to Underwater Explosion[J]. Marine Structures, 2017, 53: 164-180. doi: 10.1016/j.marstruc.2017.02.004
    [69]
    Xiao W, Zhang A M, Wang Y. Modified Numerical Model for Simulating Fluid-filled Structure Response to Underwater Explosion with Cavitation[J]. Journal of Shanghai Jiaotong University(Science), 2014, 19(3): 346-353. doi: 10.1007/s12204-014-1508-4
    [70]
    刘云龙. 水下爆炸作用下圆柱壳鞭状运动响应研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
    [71]
    吴迪. 非接触爆炸冲击波作用下船体结构响应研究[D]. 上海: 上海交通大学, 2007.
    [72]
    郭君, 崔杰, 肖巍, 等. 舰船双层底液舱水下爆炸作用下动态响应[J]. 噪声与振动控制, 2012, 32(6): 94-99.

    Guo Jun, Cui Jie, Xiao Wei, et al. Dynamic Response of Ship's Double Bottom Tanks Subject to Underwater Explosion[J]. Noise and Vibration Control, 2012, 32(6): 94-99.
    [73]
    Meng Z F, Cao X Y, Ming F R, et al. Study on the Pressure Characteristics of Shock Wave Propagating Across Multilayer Structures during Underwater Explosion[J]. Shock and Vibration, 2019(2): 1-19.
    [74]
    Iakovlev S. Structural Analysis of a Submerged Fluid-filled Cylindrical Shell Subjected to a Shock Wave[J]. Journal of Fluids and Structures, 2019, 90: 450-477. doi: 10.1016/j.jfluidstructs.2019.06.001
    [75]
    Tang T, Wang L J, Ma J B. Simulation of Responses of Liquid Filled Double Bottom Structures Subjected to a Closely Underwater Explosion Shock Loading[J]. Applied Mechanics and Materials, 2011, 88-89: 662-667. doi: 10.4028/www.scientific.net/AMM.88-89.662
    [76]
    董能超. 水下接触爆炸载荷下舰船舷侧多层防护结构毁伤过程研究[D]. 镇江: 江苏科技大学, 2017.
    [77]
    马欣, 张延昌, 王自力. 水下非接触爆炸载荷下双层底结构单元抗冲击性能研究[J]. 舰船科学技术, 2008, 30(6): 39-43. doi: 10.3404/j.issn.1672-7649.2008.06.005

    Ma Xin, Zhang Yan-chang, Wang Zi-li. Research on the Anti-shock Capacity of Double Bottom Cell due to UNDEX[J]. Ship Science and Technology, 2008, 30(6): 39-43. doi: 10.3404/j.issn.1672-7649.2008.06.005
    [78]
    尹群. 水面舰船设备冲击环境与结构抗冲击性能研究[D]. 南京: 南京航空航天大学, 2006.
    [79]
    陈崧, 杨雄辉, 唐文勇, 等. 水下近场爆炸双层防护结构抗爆能力的数值模拟分析[J]. 中国舰船研究, 2015, 10(1): 32-38. doi: 10.3969/j.issn.1673-3185.2015.01.005

    Chen Song, Yang Xiong-hui, Tang Wen-yong, et al. Numerical Simulation on the Explosion-Resistance Capability of Double Shell Structures Subjected to Underwater Near-Field Explosion[J]. Chinese Journal of Ship Research, 2015, 10(1): 32-38. doi: 10.3969/j.issn.1673-3185.2015.01.005
    [80]
    李青, 吴广明. 水面舰艇舷侧抗冲击防护结构形式初探[J]. 中国舰船研究, 2008, 3(3): 26-29. doi: 10.3969/j.issn.1673-3185.2008.03.006

    Li Qing, Wu Guang-ming. Study on the Defend Structures Against Impact on the Shipboard of Naval Vessels[J]. Chinese Journal of Ship Research, 2008, 3(3): 26-29. doi: 10.3969/j.issn.1673-3185.2008.03.006
    [81]
    姚熊亮, 侯明亮, 李青, 等. Y型舷侧结构抗冲击性能数值仿真实验研究[J]. 哈尔滨工程大学学报, 2006, 27(6): 796-801. doi: 10.3969/j.issn.1006-7043.2006.06.002

    Yao Xiong-liang, Hou Ming-liang, Li Qing, et al. Numerical Simulation Research on Counter ImpingementCapability of Y Shape Shipboard Structure[J]. Journal of Harbin Engineering University, 2006, 27(6): 796-801. doi: 10.3969/j.issn.1006-7043.2006.06.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article Views(659) PDF Downloads(77) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return