Citation: | GAO Huizhong, LIU Yang, MA Weifeng, ZONG Xiao, GUO Zhaoyuan. Kalman Filter-Based Closed Cycle Steam Temperature Processing Method[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 771-777. doi: 10.11993/j.issn.2096-3920.2022-0089 |
[1] |
黄庆, 卜建杰, 郑邯勇. Li/SF6热源在鱼雷和UUV推进系统中的应用[J]. 舰船科学技术, 2006, 28(2): 67-71.
Huang Qing, Bu Jianjie, Zheng Hanyong. The application of Li/SF6 heat source in the torpedo and the UUV propulsion systems[J]. Ship Science and Technology, 2006, 28(2): 67-71.
|
[2] |
白杰, 党建军, 曹蕾蕾. 基于Li/SF6能源的新型UUV动力系统热力性能分析[J]. 水下无人系统学报, 2019, 27(2): 212-216.
Bai Jie, Dang Jianjun, Cao Leilei. Thermodynamic performance analysis of a new type of UUV power system based on Li/SF6 energy[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 212-216.
|
[3] |
白杰. 无人水下航行器新型热电联合闭式循环动力系统研究[D]. 西安: 西北工业大学, 2016.
|
[4] |
陈支厦, 郑邯勇, 赵文忠, 等. 鱼雷热动力能源研究现状及发展趋势[C]//OSEC首届兵器工程大会论文集. 重庆: OSEC, 2017.
|
[5] |
朱强, 郑邯勇, 王树峰, 等. 金属燃料动力系统在鱼雷和UUV上的应用[C]//OSEC首届兵器工程大会论文集. 重庆: OSEC, 2017.
|
[6] |
Wang G, Yang Y, Wang S. Ocean thermal energy application technologies for unmanned underwater vehicles: A comprehensive review[J]. Applied Energy, 2020, 278: 115752. doi: 10.1016/j.apenergy.2020.115752
|
[7] |
Waters D F, Cadou C P. Modeling a hybrid rankine-cycle/fuel-cell underwater propulsion system based on aluminum-water combustion[J]. Journal of Power Sources, 2013, 221(1): 272-283.
|
[8] |
刘景云. Li/SF6双闭环动力系统自适应控制技术研究[C]//中国造船工程学会船舶力学学术委员会测试技术学组2021年学术会议论文集. 昆明: 中国造船工程学会, 2021.
|
[9] |
张艳杰, 梁鉴如, 马强, 等. 光纤温度传感系统中信号去噪方法[J]. 传感器与微系统, 2017, 36(12): 19-21.
Zhang Yanjie, Liang Jianru, Ma Qiang, et al. Signal denoising method in optical fiber temperature sensing system[J]. Transducer and Microsystem Technologies, 2017, 36(12): 19-21.
|
[10] |
于洋, 李杰, 余松, 等. 基于卡尔曼滤波的电磁流量计信号处理[J]. 电子测量与仪器学报, 2022, 36(9): 183-189.
Yu Yang, Li Jie, Yu Song, et al. Kalman filter-based electromagnetic flowmeter signal processing[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(9): 183-189.
|
[11] |
卢胜利, 刘美玲, 田彦彦. 基于卡尔曼滤波的多温度传感器数据融合系统[J]. 现代科学仪器, 2013(1): 65-68.
Lu Shengli, Liu Meiling, Tian Yanyan. Data fusion system of multi temperature sensor based on Kalman filter[J]. Modern Scientific Instruments, 2013(1): 65-68.
|
[12] |
张春路. 制冷空调系统仿真原理与技术[M]. 北京: 化学工业出版社, 2012: 77-78.
|
[13] |
杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006.
|
[14] |
刘芬, 范洪强, 吕涛, 等. 基于卡尔曼滤波的含噪声小样本数据处理方法[J]. 上海大学学报(自然科学版), 2022, 28(3): 427-439.
Liu Fen, Fan Hongqiang, Lü Tao, et al. Kalman filter based method for processing small noisy sample data[J]. Journal of Shanghai University (Natural science edition), 2022, 28(3): 427-439.
|
[15] |
梁民赞, 陆扬, 周新鹏. 一种抑制卡尔曼滤波发散的实时数据处理方法[J]. 声学技术, 2008(5): 761-764.
Liang Minzan, Lu Yang, Zhou Xinpeng. A real-time data processing method for controlling Kalman filter instability[J]. Technical Acoustics, 2008(5): 761-764.
|
[16] |
张晓飞, 辛明真, 隋海琛, 等. 基于交互式多模型卡尔曼滤波的AUV超短基线跟踪算法[J]. 水下无人系统学报, 2022, 30(1): 29-36.
Zhang Xiaofei, Xin Mingzhen, Sui Haichen. AUV ultra-short baseline tracking algorithm based on interactive multi-model Kalman filter[J]. Journal of Unmanned Undersea Systems, 2022, 30(1): 29-36.
|
[17] |
朱红运, 苗岩松, 庞建国. 基于卡尔曼滤波的遥测数据野值剔除方法[J]. 航天返回与遥感, 2021, 42(4): 137-143.
Zhu Hongyun, Miao Yansong, Pang Jianguo. An outliers elimination method of telemetry data based on Kalman filter[J]. Spacecraft Recovery & Remote Sensing, 2021, 42(4): 137-143.
|
[18] |
曹玉波, 李健, 周琦祥, 等. 一阶惯性数字化滤波算法研究及应用[J]. 吉林化工学院学报, 2019, 36(11): 50-52.
Cao Yubo, Li Jian, Zhou Qixiang, et al. Research and application on digital filter algorithm of first order inertial system[J]. Journal of Jilin Institute of Chemical Technology, 2019, 36(11): 50-52.
|