• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 32 Issue 5
Oct  2024
Turn off MathJax
Article Contents
DENG Jianjing, SHI Lei, WANG Chenyu, LIU Liwen, YANG Xiangfeng, YANG Yunchuan. Feature Selection of Scale Target Recognition by Underwater Acoustic Homing Weapons Based on Random Forest[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 839-845. doi: 10.11993/j.issn.2096-3920.2022-0081
Citation: DENG Jianjing, SHI Lei, WANG Chenyu, LIU Liwen, YANG Xiangfeng, YANG Yunchuan. Feature Selection of Scale Target Recognition by Underwater Acoustic Homing Weapons Based on Random Forest[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 839-845. doi: 10.11993/j.issn.2096-3920.2022-0081

Feature Selection of Scale Target Recognition by Underwater Acoustic Homing Weapons Based on Random Forest

doi: 10.11993/j.issn.2096-3920.2022-0081
  • Received Date: 2023-04-29
  • Accepted Date: 2023-06-12
  • Rev Recd Date: 2023-05-29
  • Available Online: 2024-09-03
  • When underwater acoustic homing weapons identify underwater scale targets, it is necessary to extract different dimensional features from underwater target echoes and combine the features to form a complementary feature set to improve the recognition accuracy. However, due to the different application scenarios of different features, introducing all features leads to a high dimension of the feature set and may contain redundant information among each other, which will increase the difficulty of recognition. In the active recognition problem of underwater acoustic homing weapons, the feature set has a high dimension and needs to be selected. To solve these problems, a feature selection algorithm based on random forest(RF)was proposed in this paper. At the same time, to solve the problem of small amounts and unbalanced types of active echo data of underwater acoustic homing weapons, the synthetic minority oversampling technique was adopted in the feature domain. The feature subsets selected by the proposed method were put into the classifiers for testing by using real data. The results show that the proposed method can obtain better feature subsets and effectively improve the recognition accuracy.

     

  • loading
  • [1]
    周德善, 李志舜, 朱邦元. 鱼雷自导技术[M]. 北京: 国防工业出版社, 2009.
    [2]
    何心怡, 高贺, 陈菁, 等. 鱼雷真假目标识别技术现状与展望[J]. 鱼雷技术, 2016, 24(1): 23-27.

    HE X Y, GAO H, CHEN J, et al. Current situation and prospect on torpedo's true/false target identification technologies[J]. Journal of Unmanned Undersea Systems, 2016, 24(1): 23-27.
    [3]
    石敏, 陈立纲, 蒋兴舟, 等. 具有亮点和方位延展特征的线列阵声诱饵研究[J]. 海军工程大学学报, 2005, 17(1): 58-62. doi: 10.3969/j.issn.1009-3486.2005.01.014
    [4]
    徐枫, 严冰, 王海陆, 等. 水下声自导武器垂直目标亮点高分辨算法仿真与实验研究[J]. 水下无人系统学报, 2009, 17(6): 35-40.

    XU F, YAN B, WANG H L, et al. Simulation and experimental study of a high-resolution method for torpedo vertical highlights[J]. Journal of Unmanned Undersea Systems, 2009, 17(6): 35-40.
    [5]
    胡桥, 郝保安, 吕林夏, 等. 基于组合支持向量机的水声目标智能识别研究[J]. 应用声学, 2009, 28(6): 421-430. doi: 10.3969/j.issn.1000-310X.2009.06.004

    HU Q, HAO B A, LÜ L X, et al. Intelligent underwater-acoustic-target recognition based on combination support vector machine[J]. Journal of Applied Acoustics, 2009, 28(6): 421-430. doi: 10.3969/j.issn.1000-310X.2009.06.004
    [6]
    ZHANG S, LI C, WANG K, et al. Improving recognition accuracy of partial discharge patterns by image oriented feature extraction and selection technique[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(2): 1076-1087. doi: 10.1109/TDEI.2015.005226
    [7]
    Strobl C, Boulesteix A L, Kneib T, et al. Conditional variable importance for random forest[J]. BMC Bioinformatics, 2008, 9(1): 1-11. doi: 10.1186/1471-2105-9-1
    [8]
    CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357 doi: 10.1613/jair.953
    [9]
    王干军, 李锦舒, 吴毅江, 等. 基于随机森林的高压电缆局部放电特征寻优[J]. 电网技术, 2019, 43(4): 1329-1335.

    WANG G J, LI J S, WU Y J, et al. Random forest based feature selection for partial discharge recognition of HV cables[J]. Power System Technology, 2019, 43(4): 1329-1335.
    [10]
    O’BRIEN, ROBRET, ISHWARAN H. A random forests quantile classifier for class imbalanced data[J]. Pattern Recognition, 2019, 90: 232-249. doi: 10.1016/j.patcog.2019.01.036
    [11]
    Bader-El-Den M, TEITEI E, PERRY T. Biased random forest for dealing with the class imbalance problem[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(7): 2163-2172.
    [12]
    Hasan M A M, Nasser M, Ahmad S, et al. Feature selection for intrusion detection using random forest[J]. Journal of Information Security, 2016, 7(3): 129-140. doi: 10.4236/jis.2016.73009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article Views(422) PDF Downloads(64) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return