
| Citation: | DENG Jianjing, SHI Lei, WANG Chenyu, LIU Liwen, YANG Xiangfeng, YANG Yunchuan. Feature Selection of Scale Target Recognition by Underwater Acoustic Homing Weapons Based on Random Forest[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 839-845. doi: 10.11993/j.issn.2096-3920.2022-0081 |
| [1] |
周德善, 李志舜, 朱邦元. 鱼雷自导技术[M]. 北京: 国防工业出版社, 2009.
|
| [2] |
何心怡, 高贺, 陈菁, 等. 鱼雷真假目标识别技术现状与展望[J]. 鱼雷技术, 2016, 24(1): 23-27.
HE X Y, GAO H, CHEN J, et al. Current situation and prospect on torpedo's true/false target identification technologies[J]. Journal of Unmanned Undersea Systems, 2016, 24(1): 23-27.
|
| [3] |
石敏, 陈立纲, 蒋兴舟, 等. 具有亮点和方位延展特征的线列阵声诱饵研究[J]. 海军工程大学学报, 2005, 17(1): 58-62. doi: 10.3969/j.issn.1009-3486.2005.01.014
|
| [4] |
徐枫, 严冰, 王海陆, 等. 水下声自导武器垂直目标亮点高分辨算法仿真与实验研究[J]. 水下无人系统学报, 2009, 17(6): 35-40.
XU F, YAN B, WANG H L, et al. Simulation and experimental study of a high-resolution method for torpedo vertical highlights[J]. Journal of Unmanned Undersea Systems, 2009, 17(6): 35-40.
|
| [5] |
胡桥, 郝保安, 吕林夏, 等. 基于组合支持向量机的水声目标智能识别研究[J]. 应用声学, 2009, 28(6): 421-430. doi: 10.3969/j.issn.1000-310X.2009.06.004
HU Q, HAO B A, LÜ L X, et al. Intelligent underwater-acoustic-target recognition based on combination support vector machine[J]. Journal of Applied Acoustics, 2009, 28(6): 421-430. doi: 10.3969/j.issn.1000-310X.2009.06.004
|
| [6] |
ZHANG S, LI C, WANG K, et al. Improving recognition accuracy of partial discharge patterns by image oriented feature extraction and selection technique[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(2): 1076-1087. doi: 10.1109/TDEI.2015.005226
|
| [7] |
Strobl C, Boulesteix A L, Kneib T, et al. Conditional variable importance for random forest[J]. BMC Bioinformatics, 2008, 9(1): 1-11. doi: 10.1186/1471-2105-9-1
|
| [8] |
CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357 doi: 10.1613/jair.953
|
| [9] |
王干军, 李锦舒, 吴毅江, 等. 基于随机森林的高压电缆局部放电特征寻优[J]. 电网技术, 2019, 43(4): 1329-1335.
WANG G J, LI J S, WU Y J, et al. Random forest based feature selection for partial discharge recognition of HV cables[J]. Power System Technology, 2019, 43(4): 1329-1335.
|
| [10] |
O’BRIEN, ROBRET, ISHWARAN H. A random forests quantile classifier for class imbalanced data[J]. Pattern Recognition, 2019, 90: 232-249. doi: 10.1016/j.patcog.2019.01.036
|
| [11] |
Bader-El-Den M, TEITEI E, PERRY T. Biased random forest for dealing with the class imbalance problem[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(7): 2163-2172.
|
| [12] |
Hasan M A M, Nasser M, Ahmad S, et al. Feature selection for intrusion detection using random forest[J]. Journal of Information Security, 2016, 7(3): 129-140. doi: 10.4236/jis.2016.73009
|