
| Citation: | ZHANG Rui. Influence of Design Parameters of High-Speed Undersea Vehicles with X-Shaped All-Movable Rudder and Cross-Shaped Fin on Maneuverability[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 750-759. doi: 10.11993/j.issn.2096-3920.2022-0057 |
| [1] |
孙明芳. 水下火箭的推进原理和应用[J]. 舰载武器, 1995(4): 19-25.
|
| [2] |
王建儒, 赵仕厂. 水下固体火箭发动机尾流场计算[J]. 固体火箭技术, 2007, 30(5): 388-391.
Wang Jianru, Zhao Shichang. Computations for solid rocket moter tail flow underwater[J]. Journal of Solid Rocket Technology, 2007, 30(5): 388-391.
|
| [3] |
Busquets-Mataix J, Busquets-Mataix J V, Busquets-Mataix D. Combined gas-fluid buoyancy system for improved attitude and maneuverability control for application in underwater[J]. IFAC-PapersOnLine, 2015, 48(2): 281-287. doi: 10.1016/j.ifacol.2015.06.046
|
| [4] |
黄宇, 林平, 李雨田. 基于单回转体矢量推进AUV的数学建模[J]. 水雷战与舰船防护, 2014, 22(4): 36-40.
Huang Yu, Lin Ping, Li Yutian. Mathematical modeling of vector propulsion AUV based on single revolution body[J]. Mine Warfare& Ship Self-defence, 2014, 22(4): 36-40.
|
| [5] |
黄宇. 基于矢量推进AUV的航行体运动控制研究[D]. 北京: 中国舰船研究院, 2015.
|
| [6] |
卫民. 基于矢量推进器的AUV运动控制系统研究[D]. 天津: 天津大学, 2012.
|
| [7] |
郑昆山. 基于喷水矢量推进的水下机器人设计与研究[D]. 长沙: 国防科学技术大学, 2010.
|
| [8] |
邓岩. 新型喷水推进式水下机器人关键技术研究[D]. 北京: 北京理工大学, 2015.
|
| [9] |
Ba X, Luo X H, Shi Z C. A vectored water jet propulsion method for autonomous underwater vehicles[J]. Ocean Engineering, 2013, 74: 133-140. doi: 10.1016/j.oceaneng.2013.10.003
|
| [10] |
王玉, 林秀桃, 宋诗军, 等. 矢量推进自主水下航行器动力学建模及仿真[J]. 天津大学学报: 自然科学与工程技术版, 2014, 47(2): 143-148.
Wang Yu, Lin Xiutao, Song Shijun, et al. Dynamic modeling and simulation of autonomous underwater vehicle with vectored thruster[J]. Journal of Tianjin University (Science and Technology), 2014, 47(2): 143-148.
|
| [11] |
令狐选霞, 徐德民, 唐大军. 水下航行器机动性优化设计的模型研究[J]. 西北工业大学学报, 2003, 21(2): 222-225.
Linghu Xuanxia, Xu Demin, Tang Dajun. An optimal model of maneuverability for autonomous under water vehicle[J]. Journal of Northwestern Polytechnical University, 2003, 21(2): 222-225.
|
| [12] |
肖京平. 水中兵器风洞试验技术[M]. 北京: 国防工业出版社, 2008.
|
| [13] |
Jeon M, Yoon H K, Hwang J. Analysis of the dynamic characteristics for the change of design parameters of an underwater vehicle using sensitivity analysis[J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(4): 508-519.
|
| [14] |
Dantas J L D, Barros E A D. Numerical analysis of control surface effects on AUV manoeuvrability[J]. Applied Ocean Research, 2013(42): 168-181.
|
| [15] |
Saeidinezhad A, Dehghan A A, Dehghan M M. Experimental investigation of-hydrodynamic characteristics of a submersible vehicle model with a non-axisymmetric nose in pitch maneuver[J]. Ocean Engineering, 2015, 100: 26-34. doi: 10.1016/j.oceaneng.2015.03.010
|
| [16] |
Azarsina F, Williams Christopher D. Manoeuvring simulation of the MUN Explorer AUV based on the empirical hydrodynamics of axi-symmetric bare hulls[J]. Applied Ocean Research, 2010(32): 443-453.
|
| [17] |
张宇文. 鱼雷总体设计理论与方法[M]. 西安: 西北工业大学出版社, 2015.
|
| [18] |
Wang S, Yang M, Wang Y, et al. Optimization of flight parameters for Petrel-L underwater glider[J]. IEEE Journal of Oceanic Engineering, 2021, 46(3): 817-828. doi: 10.1109/JOE.2020.3030573
|
| [19] |
Wang S, Yang M, Niu W, et al. Multidisciplinary design optimization of underwater glider for improving endurance[J]. Structural and Multidisciplinary Optimization, 2021, 63(6): 2835-51.
|
| [20] |
Bidoki M, Mortazavi M, Sabzehparvar M. A new approach in system and tactic design optimization of an autonomous underwater vehicle by using Multidisciplinary Design Optimization[J]. Ocean Engineering, 2018(147): 517-530.
|
| [21] |
黄震中. 鱼雷总体设计[M]. 西安: 西北工业大学出版社, 1986.
|
| [22] |
李天森. 鱼雷操纵性[M]. 北京: 国防工业出版社, 2007.
|
| [23] |
Sun T, Chen G, Yang S, et al. Design and optimization of a bio-inspired hull shape for AUV by surrogate model technology[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 1057-74. doi: 10.1080/19942060.2021.1940287
|
| [24] |
Song Y, Wang Y, Yang S, et al. Sensitivity analysis and parameter optimization of energy consumption for underwater gliders[J]. Energy, 2020, 191: 116506. doi: 10.1016/j.energy.2019.116506
|