• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 31 Issue 5
Oct  2023
Turn off MathJax
Article Contents
ZHANG Rui. Influence of Design Parameters of High-Speed Undersea Vehicles with X-Shaped All-Movable Rudder and Cross-Shaped Fin on Maneuverability[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 750-759. doi: 10.11993/j.issn.2096-3920.2022-0057
Citation: ZHANG Rui. Influence of Design Parameters of High-Speed Undersea Vehicles with X-Shaped All-Movable Rudder and Cross-Shaped Fin on Maneuverability[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 750-759. doi: 10.11993/j.issn.2096-3920.2022-0057

Influence of Design Parameters of High-Speed Undersea Vehicles with X-Shaped All-Movable Rudder and Cross-Shaped Fin on Maneuverability

doi: 10.11993/j.issn.2096-3920.2022-0057
  • Received Date: 2022-09-14
  • Accepted Date: 2022-12-05
  • Rev Recd Date: 2022-11-22
  • Available Online: 2023-08-15
  • Parameterized shape of the undersea vehicle with X-shaped full-rudder and cross-shaped fin layout was established.The function of the fluid dynamic coefficient of the undersea vehicle with the size of each part was established by the principle of component superposition. The relationship between the fluid dynamics, steering stability, maneuverability of the vehicle and the hydrodynamic coefficient was established. Under the premise of the size range of each component, the sample interval of the design variables was obtained by optimizing the hypercube Latin sampling. The experimental design idea was used to analyze the influence degree of the design parameters on the maneuverability of the vehicle, the sensitivity of maneuverability to changes in design parameters was analyzed as well. The results showed that the high-speed undersea vehicle with X-shaped full-rudder and cross-shaped fin layout has good maneuverability. When the design parameters change within the constraint range, the dynamic stability of the longitudinal plane Gy and the lateral plane Gz are both above 0.4. The maneuverability of the vehicle as well as the negative buoyancy of the vehicle and the relative position of the center of gravity and the center of buoyancy have a significant impact on the Gy and Gz, and have a negative effect presented; the chord length and the length of the rudder section of the full rudder have the greatest impact on the maneuverability of the vehicle. The rudder section chord length and extension have the greatest influence on the maneuverability of the vehicle, and the full rudder should be designed as a large aspect ratio rudder and installed as close as possible to the tail.

     

  • loading
  • [1]
    孙明芳. 水下火箭的推进原理和应用[J]. 舰载武器, 1995(4): 19-25.
    [2]
    王建儒, 赵仕厂. 水下固体火箭发动机尾流场计算[J]. 固体火箭技术, 2007, 30(5): 388-391.

    Wang Jianru, Zhao Shichang. Computations for solid rocket moter tail flow underwater[J]. Journal of Solid Rocket Technology, 2007, 30(5): 388-391.
    [3]
    Busquets-Mataix J, Busquets-Mataix J V, Busquets-Mataix D. Combined gas-fluid buoyancy system for improved attitude and maneuverability control for application in underwater[J]. IFAC-PapersOnLine, 2015, 48(2): 281-287. doi: 10.1016/j.ifacol.2015.06.046
    [4]
    黄宇, 林平, 李雨田. 基于单回转体矢量推进AUV的数学建模[J]. 水雷战与舰船防护, 2014, 22(4): 36-40.

    Huang Yu, Lin Ping, Li Yutian. Mathematical modeling of vector propulsion AUV based on single revolution body[J]. Mine Warfare& Ship Self-defence, 2014, 22(4): 36-40.
    [5]
    黄宇. 基于矢量推进AUV的航行体运动控制研究[D]. 北京: 中国舰船研究院, 2015.
    [6]
    卫民. 基于矢量推进器的AUV运动控制系统研究[D]. 天津: 天津大学, 2012.
    [7]
    郑昆山. 基于喷水矢量推进的水下机器人设计与研究[D]. 长沙: 国防科学技术大学, 2010.
    [8]
    邓岩. 新型喷水推进式水下机器人关键技术研究[D]. 北京: 北京理工大学, 2015.
    [9]
    Ba X, Luo X H, Shi Z C. A vectored water jet propulsion method for autonomous underwater vehicles[J]. Ocean Engineering, 2013, 74: 133-140. doi: 10.1016/j.oceaneng.2013.10.003
    [10]
    王玉, 林秀桃, 宋诗军, 等. 矢量推进自主水下航行器动力学建模及仿真[J]. 天津大学学报: 自然科学与工程技术版, 2014, 47(2): 143-148.

    Wang Yu, Lin Xiutao, Song Shijun, et al. Dynamic modeling and simulation of autonomous underwater vehicle with vectored thruster[J]. Journal of Tianjin University (Science and Technology), 2014, 47(2): 143-148.
    [11]
    令狐选霞, 徐德民, 唐大军. 水下航行器机动性优化设计的模型研究[J]. 西北工业大学学报, 2003, 21(2): 222-225.

    Linghu Xuanxia, Xu Demin, Tang Dajun. An optimal model of maneuverability for autonomous under water vehicle[J]. Journal of Northwestern Polytechnical University, 2003, 21(2): 222-225.
    [12]
    肖京平. 水中兵器风洞试验技术[M]. 北京: 国防工业出版社, 2008.
    [13]
    Jeon M, Yoon H K, Hwang J. Analysis of the dynamic characteristics for the change of design parameters of an underwater vehicle using sensitivity analysis[J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(4): 508-519.
    [14]
    Dantas J L D, Barros E A D. Numerical analysis of control surface effects on AUV manoeuvrability[J]. Applied Ocean Research, 2013(42): 168-181.
    [15]
    Saeidinezhad A, Dehghan A A, Dehghan M M. Experimental investigation of-hydrodynamic characteristics of a submersible vehicle model with a non-axisymmetric nose in pitch maneuver[J]. Ocean Engineering, 2015, 100: 26-34. doi: 10.1016/j.oceaneng.2015.03.010
    [16]
    Azarsina F, Williams Christopher D. Manoeuvring simulation of the MUN Explorer AUV based on the empirical hydrodynamics of axi-symmetric bare hulls[J]. Applied Ocean Research, 2010(32): 443-453.
    [17]
    张宇文. 鱼雷总体设计理论与方法[M]. 西安: 西北工业大学出版社, 2015.
    [18]
    Wang S, Yang M, Wang Y, et al. Optimization of flight parameters for Petrel-L underwater glider[J]. IEEE Journal of Oceanic Engineering, 2021, 46(3): 817-828. doi: 10.1109/JOE.2020.3030573
    [19]
    Wang S, Yang M, Niu W, et al. Multidisciplinary design optimization of underwater glider for improving endurance[J]. Structural and Multidisciplinary Optimization, 2021, 63(6): 2835-51.
    [20]
    Bidoki M, Mortazavi M, Sabzehparvar M. A new approach in system and tactic design optimization of an autonomous underwater vehicle by using Multidisciplinary Design Optimization[J]. Ocean Engineering, 2018(147): 517-530.
    [21]
    黄震中. 鱼雷总体设计[M]. 西安: 西北工业大学出版社, 1986.
    [22]
    李天森. 鱼雷操纵性[M]. 北京: 国防工业出版社, 2007.
    [23]
    Sun T, Chen G, Yang S, et al. Design and optimization of a bio-inspired hull shape for AUV by surrogate model technology[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 1057-74. doi: 10.1080/19942060.2021.1940287
    [24]
    Song Y, Wang Y, Yang S, et al. Sensitivity analysis and parameter optimization of energy consumption for underwater gliders[J]. Energy, 2020, 191: 116506. doi: 10.1016/j.energy.2019.116506
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article Views(381) PDF Downloads(57) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return