• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 31 Issue 5
Oct  2023
Turn off MathJax
Article Contents
TANG Yunqing, CHEN Xingyuan, XU Zheng, LIU Chenfan, ZHANG Liangliang, LIU Pingan. Research Progress and Prospects of Aluminum-Water Batteries[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 812-819. doi: 10.11993/j.issn.2096-3920.2022-0055
Citation: TANG Yunqing, CHEN Xingyuan, XU Zheng, LIU Chenfan, ZHANG Liangliang, LIU Pingan. Research Progress and Prospects of Aluminum-Water Batteries[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 812-819. doi: 10.11993/j.issn.2096-3920.2022-0055

Research Progress and Prospects of Aluminum-Water Batteries

doi: 10.11993/j.issn.2096-3920.2022-0055
  • Received Date: 2022-09-06
  • Accepted Date: 2022-11-09
  • Rev Recd Date: 2022-10-16
  • Available Online: 2023-09-25
  • The demand for underwater power sources is increasing as marine activities increase, and unmanned undersea vehicles(UUVs) develop. Aluminum is a promising anode material due to its high specific capacity, high electrochemical activity, and low cost. Aluminum-water batteries with aluminum alloy as anode, hydrogen evolution material as cathode, and seawater as electrolyte have specific energy and specific power of 400 Wh/kg and 35 W/L, respectively. These batteries are widely applied in aerospace, automotive, military, and other fields. This paper elaborated on the working principle of aluminum-water batteries and reviewed the research progress of aluminum alloy anodes, hydrogen evolution cathodes, and electrolyte materials. Then, it summarized the development process and the existing challenges of aluminum-water battery prototypes and listed the applications of aluminum-water batteries in UUVs, underwater energy stations, and underwater preset weapon systems. Finally, this paper analyzed the advantages and disadvantages of aluminum-water batteries, as well as their future development direction, so as to provide a reference for the application of aluminum-water batteries in UUVs, oceanographic buoys, underwater workstations, and other underwater equipment in the future.

     

  • loading
  • [1]
    Albertus P, Babinec S, Litzelman S, et al. Status and chal lenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nature Energy, 2017, 3(185): 16-21.
    [2]
    Cheng F, Liang J, Tao Z, et al. Functional materials for rechargeable batteries[J]. Advanced Materials, 2011, 23(15): 1695-1715. doi: 10.1002/adma.201003587
    [3]
    Zhao Y, Adair K R, Sun X. Recent developments and insights into the understanding of Na-metal anodes for Na-metal batteries[J]. Energy & Environmental Science, 2018, 11(10): 2673-2695.
    [4]
    Zheng X, Ahmad T, Chen W. Challenges and strategies on Zn electrodeposition for stable znion batteries[J]. Energy Storage Materials, 2021, 39: 365-394. doi: 10.1016/j.ensm.2021.04.027
    [5]
    宋强, 卢凯发, 赵满. 铝空(氧)电池与铝水电池水下应用可行性分析[J]. 船电技术, 2020, 40(8): 25-28. doi: 10.3969/j.issn.1003-4862.2020.08.007

    Song Qiang, Lu Kaifa, Zhao Man. Feasibility analysis of underwater application of aluminum-air(oxygen) and aluminum-water cell[J]. Marine Electric, 2020, 40(8): 25-28. doi: 10.3969/j.issn.1003-4862.2020.08.007
    [6]
    Mallick S, Raj C R. Aqueous rechargeable Zn-ion batteries: strategies for improving the energy storage performance[J]. ChemSusChem, 2021, 14(9): 1987-2022. doi: 10.1002/cssc.202100299
    [7]
    Urbach H B, Icenhower D E, Cervi M C, et al. Electrochemical cell using lithium-aluminum alloy anode and aqueous electrolyte: US3980498A[P]. 1976-09-14.
    [8]
    李振亚, 余远彬, 秦学, 等. 铝-水电池的研究[J]. 电源技术, 1997, 21(1): 11-14,27.

    Li Zhenya, Yu Yuanbin, Qin Xue, et al. Studies of AI-H2O battery[J]. Chinese Journal of Power Sources, 1997, 21(1): 11-14,27.
    [9]
    Shen P K, Tseung A C C, Kuo C. Development of an aluminium/sea water battery for sub-sea applications[J]. Journal of Power Sources, 1994, 47(1-2): 119-127. doi: 10.1016/0378-7753(94)80055-3
    [10]
    Pino M, Herranz D, Chacon J, et al. Carbon treated commercial aluminium alloys as anodes for aluminium-air batteries in sodium chloride electrolyte[J]. Journal of Power Sources, 2016, 326(15): 296-302.
    [11]
    马正青, 黎文献, 余琨, 等. 新型铝合金阳极的腐蚀行为[J]. 表面技术, 2002, 31(4): 17-20. doi: 10.3969/j.issn.1001-3660.2002.04.006

    Ma Zhengqing, Li Wenxian, Yu Kun, et al. Study on the corrosion of new aluminum alloy[J]. Surface Technology, 2002, 31(4): 17-20. doi: 10.3969/j.issn.1001-3660.2002.04.006
    [12]
    田文增, 陈小华, 林立. 电池用铝合金阳极材料的研究进展[J]. 船电技术, 2008(6): 364-366. doi: 10.3969/j.issn.1003-4862.2008.06.018

    Tian Wenzeng, Chen Xiaohua, Lin Li. Progress in aluminum alloy anodes for alkaline aluminum battery[J]. Marine Electric, 2008(6): 364-366. doi: 10.3969/j.issn.1003-4862.2008.06.018
    [13]
    Linjee S, Moonngam S, Klomjit P, et al. Corrosion behaviour improvement from the ultrafine-grained Al-Zn-In​ alloys in Al-air battery[J]. Energy Reports, 2022, 8: 5117-5128. doi: 10.1016/j.egyr.2022.03.132
    [14]
    Ren J M, Liu T, Zhang J, et al. Spray-formed commercial aluminum alloy anodes with suppressed self-corrosion for Al-air batteries[J]. Journal of Power Sources, 2022, 524: 231082. doi: 10.1016/j.jpowsour.2022.231082
    [15]
    Peng G S, Huang J, Gu Y C, et al. Self-corrosion, electrochemical and discharge behavior of commercial purity Al anode via Mn modification in Al-air battery[J]. Rare Metals, 2021, 40(12): 3501-3511. doi: 10.1007/s12598-020-01687-9
    [16]
    Gao J X, Fan H F, Wang E D, et al. Exploring the effect of magnesium content on the electrochemical performance of aluminum anodes in alkaline batteries[J]. Electrochimica Acta, 2020, 353: 136497. doi: 10.1016/j.electacta.2020.136497
    [17]
    Palanysami S, Rajendhran N, Srinivasan S, et al. A novel Nano-YSZ-Al alloy anode for Al-air battery[J]. Journal of Applied Electrochemistry, 2021, 51: 345-356. doi: 10.1007/s10800-020-01493-2
    [18]
    Cabrini M, Lorenzi S, Pastore T, et al. Evaluation of corrosion resistance of Al-10Si-Mg alloy obtained by means of direct metal laser sintering[J]. Journal of Materials Processing Technology, 2016, 231: 326-335. doi: 10.1016/j.jmatprotec.2015.12.033
    [19]
    Wu Z B, Zhang H T, Zou J, et al. Effect of microstructure on discharge performance of Al-0.8Sn-0.05Ga-0.9Mg-1.0Zn (wt%) alloy as anode for seawater-activated battery[J]. Materials and Corrosion, 2020, 71(10): 1680-1690. doi: 10.1002/maco.202011663
    [20]
    Han Z H, Xu Y, Zhou S G, et al. The effect of annealing on electrochemical performances of an Al-Sn-Ga-Mg alloy as an anode for Al-air batteries in alkaline electrolytes[J]. Journal of the Electrochemical Society, 2020, 167: 100541. doi: 10.1149/1945-7111/ab9b97
    [21]
    Lasia A. Mechanism and kinetics of the hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2019, 44(36): 19484-19518. doi: 10.1016/j.ijhydene.2019.05.183
    [22]
    Anantharaj S. Hydrogen evolution reaction on Pt and Ru in alkali with volmer-step promotors and electronic structure modulators[J]. Current Opinion in Electrochemistry, 2022, 33: 100961. doi: 10.1016/j.coelec.2022.100961
    [23]
    程煜, 徐新楠, 张莉芳, 等. 析氢电催化剂的研究进展[J]. 纳米技术, 2021, 11(3): 155-165. doi: 10.12677/NAT.2021.113019

    Cheng Yu, Xu Xinnan, Zhang Lifang, et al. Research progress of electrocatalyst for hydrogen evolution reaction[J]. Hans Journal of Nanotechnology, 2021, 11(3): 155-165. doi: 10.12677/NAT.2021.113019
    [24]
    杨苗, 刘志微, 李攀. 泡沫镍负载二硫化钼复合材料电催化析氢性能研究[J]. 化学工程与技术, 2022, 12(4): 263-268. doi: 10.12677/HJCET.2022.124035

    Yang Miao, Li Zhiwei, Li Pan. Nickel foam supported MoS2 composites for electrocatalytic hydrogen evolution[J]. Hans Journal of Chemical Engineering and Technology, 2022, 12(4): 263-268. doi: 10.12677/HJCET.2022.124035
    [25]
    Huang C Q, Yu L, Zhang W, et al. N-doped Ni-Mo based sulfides for high-efficiency and stable hydrogen evolution reaction[J]. Applied Catalysis B: Environmental, 2020, 276: 119137. doi: 10.1016/j.apcatb.2020.119137
    [26]
    Eftekhari A. Electrocatalysts for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11053-11077. doi: 10.1016/j.ijhydene.2017.02.125
    [27]
    范汇吉, 孙虎元, 孙立娟, 等. 电解液的浓度和温度对铝空气电池负极性能的影响[J]. 腐蚀科学与防护技术, 2012, 24(2): 149-152.

    Fan Huiji, Sun Huyuan, Sun Lijuan, et al. Effects of chloride ion concentration and temperature on anode performance of aluminum/air batteries[J]. Corrosion Science and Protection Technology, 2012, 24(2): 149-152.
    [28]
    梁明岗, 文九巴, 贺俊光, 等. 电解液温度对铝阳极合金电化学性能的影响[J]. 腐蚀与防护, 2015, 36(5): 476-479,492.

    Liang Minggang, Wen Jiuba, He Junguang et al. Influence of solution temperature on electrochemical performance of aluminum anode alloy[J]. Corrosion & Protection, 2015, 36(5): 476-479,492.
    [29]
    卢凌彬. 铝-空气电池用铝合金阳极与电解液添加剂的研究[D]. 长沙: 中南大学, 2002.
    [30]
    Harchegani R K, Riahi A R. Effect of cerium chloride on the self-corrosion and discharge activity of aluminum anode in alkaline aluminum-air batteries[J]. Journal of the Electrochemical Society, 2022, 169(3): 030542. doi: 10.1149/1945-7111/ac5c06
    [31]
    Gu Y Y, Liu Y J, Tong Y W, et al. Improving discharge voltage of Al-Air batteries by Ga3+ additives in NaCl-Based electrolyte[J]. Nanomaterials, 2022, 12(8): 1336. doi: 10.3390/nano12081336
    [32]
    Deyab M A. 1-Allyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide as an effective organic additive in aluminum-air battery[J]. Electrochimica Acta, 2017, 244: 178-183. doi: 10.1016/j.electacta.2017.05.116
    [33]
    许超. 铝空气电池电解液添加剂的研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
    [34]
    Mckay I S, Macdonald R R, Milnes T B. Anaerobic aluminium-water electrochemical cell: WO2014133614 A2[P]. 2019-01-31.
    [35]
    魏文英, 郑邯勇, 林碧亮. 铝-水燃料电池技术发展现状[C]//OSEC首届兵器工程大会论文集. 重庆: 中国兵工学会, 2017.
    [36]
    Aquanautics Corporation. Quarterly report on long endurance underwater power system[R]. United Sates, N. P.: [s.n.], 1989.
    [37]
    Shen P K, Tseung A, Kuo C. Design of a dome-shaped aluminium water battery[J]. Journal of Applied Electrochemistry, 1994, 24: 145-148.
    [38]
    Pulsone N B, Hart D P, Siegel A M, et al. Aluminum-water energy system for autonomous undersea vehicles[J]. Lincoln Laboratory Journal, 2017, 22(2): 79-90.
    [39]
    Robert H. Cartridges for controlled hydrogen generation based on galvanic zn water reaction[C]//European Hydrogen Energy Conference. Seville, Spain: Fraunhofer, 2014
    [40]
    张林森, 王双元, 王为, 等. 铝-水电池制氢体系的结构设计[J]. 电源技术, 2007, 31(5): 393-395. doi: 10.3969/j.issn.1002-087X.2007.05.013

    Zhang Linsen, Wang Shuangyuan, Wang Wei, et al. Structural design of aluminum-water hydrogen storage cell[J]. Chinese Journal of Power Sources, 2007, 31(5): 393-395. doi: 10.3969/j.issn.1002-087X.2007.05.013
    [41]
    王二东, 刘敏, 孙公权. 一种金属海水燃料电池组: CN111326757A[P]. 2020-06-23.
    [42]
    杨灿军, 吴泽亮, 夏庆超, 等. 一种铝-水电化学电池系统: CN113690469A[P]. 2021-11-23.
    [43]
    秦嗣牧, 林鑫, 毛文鸣, 等. 一种海上应急灯: CN10957 8907A[P]. 2019-04-05.
    [44]
    朱九香, 张沈卫. 北斗海上救生定位集成系统: CN112 526552A[P]. 2021-03-19.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(3)

    Article Metrics

    Article Views(507) PDF Downloads(77) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return