• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 31 Issue 6
Dec  2023
Turn off MathJax
Article Contents
YANG Changsheng, GOU Wenbo, LIANG Hong. Ship Wake Detection Based on One-Dimensional Convolutional Neural Network[J]. Journal of Unmanned Undersea Systems, 2023, 31(6): 839-846. doi: 10.11993/j.issn.2096-3920.2022-0052
Citation: YANG Changsheng, GOU Wenbo, LIANG Hong. Ship Wake Detection Based on One-Dimensional Convolutional Neural Network[J]. Journal of Unmanned Undersea Systems, 2023, 31(6): 839-846. doi: 10.11993/j.issn.2096-3920.2022-0052

Ship Wake Detection Based on One-Dimensional Convolutional Neural Network

doi: 10.11993/j.issn.2096-3920.2022-0052
  • Received Date: 2022-08-29
  • Accepted Date: 2022-11-09
  • Rev Recd Date: 2022-09-22
  • Available Online: 2023-11-22
  • In order to improve the detection accuracy of ship wake, this paper proposed a ship wake detection method based on a one-dimensional convolutional neural network (1DCNN). Firstly, the simulation data set was constructed by using the ship wake scattering echo model. Then the reliability of the scattering echo model was verified by the water tank simulation experiment, and the experimental data set was constructed. Finally, a 1DCNN was built by comprehensively considering the detection accuracy and parameter quantity of different structural models and compared with the traditional detection algorithm (based on a one-class support vector machine and back propagation neural network) on the data set. The simulation results show that compared with the traditional detection algorithm, the 1DCNN proposed in this paper improves the detection accuracy and detection efficiency of ship wake under different signal-to-noise ratios and has good engineering application value.

     

  • loading
  • [1]
    王成, 吴岩, 杨廷飞. 利用改进单分类支持向量机提升舰船尾流目标的检测准确率[J]. 兵工学报, 2020, 41(9): 1887-1893.

    Wang Cheng, Wu Yan, Yang Tingfei. Improving the detection accuracy of wake targets by improved one-class support vector machine[J]. Acta Armamentarii, 2020, 41(9): 1887-1893.
    [2]
    樊书宏, 严冰, 刘昆仑, 等. 舰船尾流侧向声检测方法[J]. 声学技术, 2011, 30(6): 474-479.

    Fan Shuhong, Yan Bing, Liu Kunlun, et al. A study of ships wake detection by side acoustic scattering[J]. Technical Acoustics, 2011, 30(6): 474-479.
    [3]
    Jeong S, Ban S W, Choi S, et al. Surface ship-wake detection using active sonar and one-class support vector machine[J]. IEEE Journal of Oceanic Engineering, 2012, 37(3): 456-466. doi: 10.1109/JOE.2012.2192344
    [4]
    金磊磊, 梁红, 杨长生. 基于卷积神经网络的水下目标声呐图像识别方法[J]. 西北工业大学学报, 2021, 39(2): 285-291. doi: 10.1051/jnwpu/20213920285

    Jin Leilei, Liang Hong, Yang Changsheng. Sonar image recognition of underwater target based on convolutional neural network[J]. Joumal of Nonhwestem Polytechnical University, 2021, 39(2): 285-291. doi: 10.1051/jnwpu/20213920285
    [5]
    Ferguson E L, Ramakrishnan R, Williams S B, et al. Convolutional neural networks for passive monitoring of a shallow water environment using a single sensor[C]//2017 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). New Orleans, LA, USA: IEEE, 2017: 2657-2661.
    [6]
    Razzak M I, Naz S, Zaib A. Deep learning for medical image processing: Overview, challenges and the future[EB/OL]. (2017-04-22)[2022-08-29]. https://arxiv.org/abs/1704.06825v1.
    [7]
    R J 尤立克. 水声学原理[M]. 洪申, 译. 哈尔滨: 哈尔滨船舶工程学院出版社, 1990.
    [8]
    Keller J B, Miksis M. Bubble oscillations of large amplitude[J]. The Journal of the Acoustical Society of America, 1980, 68(2): 628-633. doi: 10.1121/1.384720
    [9]
    王虹斌. 水中气泡幕的多体多次声散射模型分析[J]. 船舶工程, 2006, 28(3): 30-33. doi: 10.13788/j.cnki.cbgc.2006.03.008

    Wang Hongbin. Analysis of multi-body multi-dispersion model for bubble screen[J]. Ship Engineering, 2006, 28(3): 30-33. doi: 10.13788/j.cnki.cbgc.2006.03.008
    [10]
    Leifer I, Patro R K. The bubble mechanism for methane transport from the shallow sea bed to the surface: A review and sensitivity study[J]. Continental Shelf Research, 2002, 22(16): 2409-2428. doi: 10.1016/S0278-4343(02)00065-1
    [11]
    陈维兴, 崔朝臣, 李小菁, 等. 基于多种小波变换的一维卷积循环神经网络的风电机组轴承故障诊断[J]. 计量学报, 2006, 28(3): 30-33.

    Chen Weixing, Cui Chaochen, Li Xiaojing, et al. Bearing fault diagnosis of wind turbine based on multi-wavelet-1 d convolutional LSTM[J]. Acta Metrologica Sinica, 2006, 28(3): 30-33.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(8)

    Article Metrics

    Article Views(388) PDF Downloads(52) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return