
| Citation: | ZHANG Haisheng, DONG Zaopeng, YANG Lian, ZHANG Zhengqi, QI Shijie, LI Jiakang. Identification of Unmanned Surface Vehicle Maneuverability Parameters Based on Improved WLSSVM[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 687-695. doi: 10.11993/j.issn.2096-3920.2022-0044 |
| [1] |
郑华荣, 魏艳, 瞿逢重. 水面无人艇研究现状[J]. 中国造船, 2020, 61(z1): 228-240.
Zheng Huarong, Wei Yan, Qu Fengzhong. Review on recent developments of unmanned marine surface vessels[J]. Shipbuilding of China, 2020, 61(z1): 228-240.
|
| [2] |
田延飞. 实船试验操纵运动建模与参数辨识研究[D]. 武汉: 武汉理工大学, 2018.
|
| [3] |
赵百岗, 张显库, 李争, 等. 船舶运动辨识建模研究现状与展望[J]. 舰船科学技术, 2021, 43(23): 21-24. doi: 10.3404/j.issn.1672-7649.2021.12.004
Zhao Baigang, Zhang Xianku, Li Zheng, et al. Research on ship motion identification modelling[J]. Ship Science and Technology, 2021, 43(23): 21-24. doi: 10.3404/j.issn.1672-7649.2021.12.004
|
| [4] |
梅斌. 基于自航试验的船舶操纵运动灰箱辨识建模[D]. 大连: 大连海事大学, 2020.
|
| [5] |
秦余钢, 马勇, 张亮, 等. 基于改进最小二乘算法的船舶操纵性参数辨识[J]. 吉林大学学报(工学版), 2016, 46(3): 897-903.
Qin Yugang, Ma Yong, Zhang Liang, et al. Parameter identification of ship’s maneuvering motion based on improved least square method[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(3): 897-903.
|
| [6] |
谢朔, 初秀民, 柳晨光, 等. 基于多新息最小二乘法的船舶操纵响应模型参数辨识[J]. 中国航海, 2017, 40(1): 73-78. doi: 10.3969/j.issn.1000-4653.2017.01.016
Xie Shuo, Chu Xiumin, Liu Chenguang, et al. Parameter identification of ship maneuvering response model based on multi-innovation least squares algorithm[J]. Navigation of China, 2017, 40(1): 73-78. doi: 10.3969/j.issn.1000-4653.2017.01.016
|
| [7] |
孙功武, 谢基榕, 王俊轩. 基于动态遗忘因子递推最小二乘算法的船舶航向模型辨识[J]. 计算机应用, 2018, 38(3): 900-904.
Sun Gongwu, Xie Jirong, Wang Junxuan. Ship course identification model based on recursive least squares algorithm with dynamic forgetting factor[J]. Journal of Computer Applications, 2018, 38(3): 900-904.
|
| [8] |
Zhao B G, Zhang X K. An improved nonlinear innovation-based parameter identification algorithm for ship models[J]. The Journal of Navigation, 2021, 74(3): 549-557. doi: 10.1017/S0373463321000102
|
| [9] |
包政凯, 朱齐丹, 刘永超. 满秩分解最小二乘法船舶航向模型辨识[J]. 智能系统学报, 2022, 17(1): 137-143.
Bao Zhengkai, Zhu Qidan, Liu Yongchao. Ship heading model identification based on full rank decomposition least square method[J]. CAAI Transactions on Intelligent Systems, 2022, 17(1): 137-143.
|
| [10] |
褚式新, 茅云生, 董早鹏, 等. 基于极大似然法的高速无人艇操纵响应模型参数辨识[J]. 兵工学报, 2020, 41(1): 127-134.
Chu Shixin, Mao Yunsheng, Dong Zaopeng, et al. Parameter identification of high-speed USV maneuvering response model based on maximum likelihood algorithm[J]. Acta Armamentarii, 2020, 41(1): 127-134.
|
| [11] |
Chen H L, Li Q, Wang Z Y. Improved maximum likelihood method for ship parameter identification[C]//2018 37th Chinese Control Conference. Wuhan, China: IEEE, 2018: 1614-1621.
|
| [12] |
Xie S, Chu X M, Liu C G, et al. Parameter identification of ship motion model based on multi-innovation methods[J]. Journal of Marine Science and Technology, 2020, 25(1): 162-184. doi: 10.1007/s00773-019-00639-y
|
| [13] |
秦操. 基于无迹卡尔曼滤波的船舶运动数学模型辨识[J]. 舰船科学技术, 2021, 43(1): 89-94.
Qin Cao. Parameter identification for ship mathematical model based on unscented Kalman filter[J]. Ship Science and Technology, 2021, 43(1): 89-94.
|
| [14] |
Zheng J, Yan D W, Yan M, et al. An unscented kalman filter online identification approach for a nonlinear ship motion model using a self-navigation test[J]. Machines, 2022, 10(5): 312. doi: 10.3390/machines10050312
|
| [15] |
Wang S, Wang L J, Im N, et al. Real-time parameter identification of ship maneuvering response model based on nonlinear Gaussian filter[J]. Ocean Engineering, 2022, 247: 110471. doi: 10.1016/j.oceaneng.2021.110471
|
| [16] |
Jiang Y, Wang X G, Zou Z J, et al. Identification of coupled response models for ship steering and roll motion using support vector machines[J]. Applied Ocean Research, 2021, 110: 102607. doi: 10.1016/j.apor.2021.102607
|
| [17] |
Wang Z H, Zou Z J, Soares C G. Identification of ship manoeuvring motion based on nu-support vector machine[J]. Ocean Engineering, 2019, 183: 270-281. doi: 10.1016/j.oceaneng.2019.04.085
|
| [18] |
Xu H T, Soares C G. Hydrodynamic coefficient estimation for ship manoeuvring in shallow water using an optimal truncated LS-SVM[J]. Ocean Engineering, 2019, 191: 106488. doi: 10.1016/j.oceaneng.2019.106488
|
| [19] |
Xu H T, Hinostroza M A, Wang Z H, et al. Experimental investigation of shallow water effect on vessel steering model using system identification method[J]. Ocean Engineering, 2020, 199: 106940. doi: 10.1016/j.oceaneng.2020.106940
|
| [20] |
Zhu M, Hahn A, Wen Y Q, et al. Optimized support vector regression algorithm-based modeling of ship dynamics[J]. Applied Ocean Research, 2019, 90: 101842. doi: 10.1016/j.apor.2019.05.027
|
| [21] |
谢朔, 初秀民, 柳晨光, 等. 基于改进 LSSVM 的船舶操纵运动模型在线参数辨识方法[J]. 中国造船, 2018, 59(2): 178-189. doi: 10.3969/j.issn.1000-4882.2018.02.019
Xie Shuo, Chu Xiumin, Liu Chenguang, et al. Online parameter identification method for ship maneuvering models based on improved LSSVM[J]. Shipbuilding of China, 2018, 59(2): 178-189. doi: 10.3969/j.issn.1000-4882.2018.02.019
|
| [22] |
孙玉山, 徐昊, 曹东东, 等. 果蝇算法在基于LSSVM智能水下机器人操纵运动模型辨识中的应用[J]. 船舶工程, 2017(2): 94-98.
Sun Yushan, Xu hao, Cao Dongdong, et al. Application of fruit fly optimization algorithm in model identification of maneuverability motion of underwater vehicle based on LSSVM[J]. Ship Engineering, 2017(2): 94-98.
|
| [23] |
周欣然, 滕召胜, 蒋星军. 基于无偏置项LSSVM的稳健在线过程建模方法[J]. 模式识别与人工智能, 2010, 23(6): 885-892.
Zhou Xinran, Teng Zhaosheng, Jiang Xingjun. Robust online process modeling method based on non-bias LSSVM[J]. Pattern Recognition and Artificial Intelligence, 2010, 23(6): 885-892.
|
| [24] |
Luo W L, Soares C G, Zou Z J. Parameter identification of ship maneuvering model based on support vector machines and particle swarm optimization[J]. Journal of Offshore Mechanics & Arctic Engineering, 2016, 138(3): 031101.
|
| [25] |
Zhu M, Hahn A, Wen Y Q, et al. Identification-based simplified model of large container ships using support vector machines and artificial bee colony algorithm[J]. Applied Ocean Research, 2017, 68: 249-261. doi: 10.1016/j.apor.2017.09.006
|
| [26] |
Xu P F, Cheng C, Cheng H X, et al. Identification-based 3 DOF model of unmanned surface vehicle using support vector machines enhanced by cuckoo search algorithm[J]. Ocean Engineering, 2020, 197: 106898. doi: 10.1016/j.oceaneng.2019.106898
|
| [27] |
周怡, 王俊雄. 自适应粒子群算法在AUV水动力参数辨识中的应用[J]. 舰船科学技术, 2021, 43(21): 90-95.
Zhou Yi, Wang Junxiong. Application of adaptive particle swarm optimization algorithm in AUV hydrodynamic parameter identification[J]. Ship Science and Technology, 2021, 43(21): 90-95.
|