• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 31 Issue 5
Oct  2023
Turn off MathJax
Article Contents
ZHANG Haisheng, DONG Zaopeng, YANG Lian, ZHANG Zhengqi, QI Shijie, LI Jiakang. Identification of Unmanned Surface Vehicle Maneuverability Parameters Based on Improved WLSSVM[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 687-695. doi: 10.11993/j.issn.2096-3920.2022-0044
Citation: ZHANG Haisheng, DONG Zaopeng, YANG Lian, ZHANG Zhengqi, QI Shijie, LI Jiakang. Identification of Unmanned Surface Vehicle Maneuverability Parameters Based on Improved WLSSVM[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 687-695. doi: 10.11993/j.issn.2096-3920.2022-0044

Identification of Unmanned Surface Vehicle Maneuverability Parameters Based on Improved WLSSVM

doi: 10.11993/j.issn.2096-3920.2022-0044
  • Received Date: 2022-08-09
  • Accepted Date: 2022-09-27
  • Rev Recd Date: 2022-09-13
  • Available Online: 2023-10-12
  • A cosine processing method was designed to achieve high-precision identification modeling of unmanned surface vehicle(USV) maneuvering motion and address the issue that some parameters will be inaccurately identified when the second-order nonlinear response model of USVs is identified by least square support vector machine(LSSVM). On this premise, a weighted LSSVM(WLSSVM) algorithm that could optimize the weight was proposed. The algorithm was based on the idea of data weighting and used the adaptive particle swarm optimization technique with a mutation approach. Based on simulation data and actual ship data, the identification results indicate that the model after cosine reconstruction effectively handles the problem of inaccurate parameter identification. At the same time, the WLSSVM with optimized weights has better prediction accuracy for parameter identification modeling. The research findings can serve as a reference for high-precision parameter identification modeling of USV maneuvering motion.

     

  • loading
  • [1]
    郑华荣, 魏艳, 瞿逢重. 水面无人艇研究现状[J]. 中国造船, 2020, 61(z1): 228-240.

    Zheng Huarong, Wei Yan, Qu Fengzhong. Review on recent developments of unmanned marine surface vessels[J]. Shipbuilding of China, 2020, 61(z1): 228-240.
    [2]
    田延飞. 实船试验操纵运动建模与参数辨识研究[D]. 武汉: 武汉理工大学, 2018.
    [3]
    赵百岗, 张显库, 李争, 等. 船舶运动辨识建模研究现状与展望[J]. 舰船科学技术, 2021, 43(23): 21-24. doi: 10.3404/j.issn.1672-7649.2021.12.004

    Zhao Baigang, Zhang Xianku, Li Zheng, et al. Research on ship motion identification modelling[J]. Ship Science and Technology, 2021, 43(23): 21-24. doi: 10.3404/j.issn.1672-7649.2021.12.004
    [4]
    梅斌. 基于自航试验的船舶操纵运动灰箱辨识建模[D]. 大连: 大连海事大学, 2020.
    [5]
    秦余钢, 马勇, 张亮, 等. 基于改进最小二乘算法的船舶操纵性参数辨识[J]. 吉林大学学报(工学版), 2016, 46(3): 897-903.

    Qin Yugang, Ma Yong, Zhang Liang, et al. Parameter identification of ship’s maneuvering motion based on improved least square method[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(3): 897-903.
    [6]
    谢朔, 初秀民, 柳晨光, 等. 基于多新息最小二乘法的船舶操纵响应模型参数辨识[J]. 中国航海, 2017, 40(1): 73-78. doi: 10.3969/j.issn.1000-4653.2017.01.016

    Xie Shuo, Chu Xiumin, Liu Chenguang, et al. Parameter identification of ship maneuvering response model based on multi-innovation least squares algorithm[J]. Navigation of China, 2017, 40(1): 73-78. doi: 10.3969/j.issn.1000-4653.2017.01.016
    [7]
    孙功武, 谢基榕, 王俊轩. 基于动态遗忘因子递推最小二乘算法的船舶航向模型辨识[J]. 计算机应用, 2018, 38(3): 900-904.

    Sun Gongwu, Xie Jirong, Wang Junxuan. Ship course identification model based on recursive least squares algorithm with dynamic forgetting factor[J]. Journal of Computer Applications, 2018, 38(3): 900-904.
    [8]
    Zhao B G, Zhang X K. An improved nonlinear innovation-based parameter identification algorithm for ship models[J]. The Journal of Navigation, 2021, 74(3): 549-557. doi: 10.1017/S0373463321000102
    [9]
    包政凯, 朱齐丹, 刘永超. 满秩分解最小二乘法船舶航向模型辨识[J]. 智能系统学报, 2022, 17(1): 137-143.

    Bao Zhengkai, Zhu Qidan, Liu Yongchao. Ship heading model identification based on full rank decomposition least square method[J]. CAAI Transactions on Intelligent Systems, 2022, 17(1): 137-143.
    [10]
    褚式新, 茅云生, 董早鹏, 等. 基于极大似然法的高速无人艇操纵响应模型参数辨识[J]. 兵工学报, 2020, 41(1): 127-134.

    Chu Shixin, Mao Yunsheng, Dong Zaopeng, et al. Parameter identification of high-speed USV maneuvering response model based on maximum likelihood algorithm[J]. Acta Armamentarii, 2020, 41(1): 127-134.
    [11]
    Chen H L, Li Q, Wang Z Y. Improved maximum likelihood method for ship parameter identification[C]//2018 37th Chinese Control Conference. Wuhan, China: IEEE, 2018: 1614-1621.
    [12]
    Xie S, Chu X M, Liu C G, et al. Parameter identification of ship motion model based on multi-innovation methods[J]. Journal of Marine Science and Technology, 2020, 25(1): 162-184. doi: 10.1007/s00773-019-00639-y
    [13]
    秦操. 基于无迹卡尔曼滤波的船舶运动数学模型辨识[J]. 舰船科学技术, 2021, 43(1): 89-94.

    Qin Cao. Parameter identification for ship mathematical model based on unscented Kalman filter[J]. Ship Science and Technology, 2021, 43(1): 89-94.
    [14]
    Zheng J, Yan D W, Yan M, et al. An unscented kalman filter online identification approach for a nonlinear ship motion model using a self-navigation test[J]. Machines, 2022, 10(5): 312. doi: 10.3390/machines10050312
    [15]
    Wang S, Wang L J, Im N, et al. Real-time parameter identification of ship maneuvering response model based on nonlinear Gaussian filter[J]. Ocean Engineering, 2022, 247: 110471. doi: 10.1016/j.oceaneng.2021.110471
    [16]
    Jiang Y, Wang X G, Zou Z J, et al. Identification of coupled response models for ship steering and roll motion using support vector machines[J]. Applied Ocean Research, 2021, 110: 102607. doi: 10.1016/j.apor.2021.102607
    [17]
    Wang Z H, Zou Z J, Soares C G. Identification of ship manoeuvring motion based on nu-support vector machine[J]. Ocean Engineering, 2019, 183: 270-281. doi: 10.1016/j.oceaneng.2019.04.085
    [18]
    Xu H T, Soares C G. Hydrodynamic coefficient estimation for ship manoeuvring in shallow water using an optimal truncated LS-SVM[J]. Ocean Engineering, 2019, 191: 106488. doi: 10.1016/j.oceaneng.2019.106488
    [19]
    Xu H T, Hinostroza M A, Wang Z H, et al. Experimental investigation of shallow water effect on vessel steering model using system identification method[J]. Ocean Engineering, 2020, 199: 106940. doi: 10.1016/j.oceaneng.2020.106940
    [20]
    Zhu M, Hahn A, Wen Y Q, et al. Optimized support vector regression algorithm-based modeling of ship dynamics[J]. Applied Ocean Research, 2019, 90: 101842. doi: 10.1016/j.apor.2019.05.027
    [21]
    谢朔, 初秀民, 柳晨光, 等. 基于改进 LSSVM 的船舶操纵运动模型在线参数辨识方法[J]. 中国造船, 2018, 59(2): 178-189. doi: 10.3969/j.issn.1000-4882.2018.02.019

    Xie Shuo, Chu Xiumin, Liu Chenguang, et al. Online parameter identification method for ship maneuvering models based on improved LSSVM[J]. Shipbuilding of China, 2018, 59(2): 178-189. doi: 10.3969/j.issn.1000-4882.2018.02.019
    [22]
    孙玉山, 徐昊, 曹东东, 等. 果蝇算法在基于LSSVM智能水下机器人操纵运动模型辨识中的应用[J]. 船舶工程, 2017(2): 94-98.

    Sun Yushan, Xu hao, Cao Dongdong, et al. Application of fruit fly optimization algorithm in model identification of maneuverability motion of underwater vehicle based on LSSVM[J]. Ship Engineering, 2017(2): 94-98.
    [23]
    周欣然, 滕召胜, 蒋星军. 基于无偏置项LSSVM的稳健在线过程建模方法[J]. 模式识别与人工智能, 2010, 23(6): 885-892.

    Zhou Xinran, Teng Zhaosheng, Jiang Xingjun. Robust online process modeling method based on non-bias LSSVM[J]. Pattern Recognition and Artificial Intelligence, 2010, 23(6): 885-892.
    [24]
    Luo W L, Soares C G, Zou Z J. Parameter identification of ship maneuvering model based on support vector machines and particle swarm optimization[J]. Journal of Offshore Mechanics & Arctic Engineering, 2016, 138(3): 031101.
    [25]
    Zhu M, Hahn A, Wen Y Q, et al. Identification-based simplified model of large container ships using support vector machines and artificial bee colony algorithm[J]. Applied Ocean Research, 2017, 68: 249-261. doi: 10.1016/j.apor.2017.09.006
    [26]
    Xu P F, Cheng C, Cheng H X, et al. Identification-based 3 DOF model of unmanned surface vehicle using support vector machines enhanced by cuckoo search algorithm[J]. Ocean Engineering, 2020, 197: 106898. doi: 10.1016/j.oceaneng.2019.106898
    [27]
    周怡, 王俊雄. 自适应粒子群算法在AUV水动力参数辨识中的应用[J]. 舰船科学技术, 2021, 43(21): 90-95.

    Zhou Yi, Wang Junxiong. Application of adaptive particle swarm optimization algorithm in AUV hydrodynamic parameter identification[J]. Ship Science and Technology, 2021, 43(21): 90-95.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(7)

    Article Metrics

    Article Views(248) PDF Downloads(30) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return