• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 30 Issue 6
Dec  2022
Turn off MathJax
Article Contents
LI Hong-yuan, LÜ Kai, CHEN Ying-liang, ZHU Min, LÜ Peng-yu, DUAN Hui-ling. Structure Design of A Novel Bionic Water-air Cross-Domain Vehicle[J]. Journal of Unmanned Undersea Systems, 2022, 30(6): 726-732. doi: 10.11993/j.issn.2096-3920.2022-0024
Citation: LI Hong-yuan, LÜ Kai, CHEN Ying-liang, ZHU Min, LÜ Peng-yu, DUAN Hui-ling. Structure Design of A Novel Bionic Water-air Cross-Domain Vehicle[J]. Journal of Unmanned Undersea Systems, 2022, 30(6): 726-732. doi: 10.11993/j.issn.2096-3920.2022-0024

Structure Design of A Novel Bionic Water-air Cross-Domain Vehicle

doi: 10.11993/j.issn.2096-3920.2022-0024
  • Received Date: 2022-07-29
  • Accepted Date: 2022-08-30
  • Rev Recd Date: 2022-08-27
  • In recent years, water-air cross-domain vehicles have become a research hotspot owing to their stereo cross-domain advantages. However, the design level of existing water-air cross-domain vehicles is limited, which hinders their popularization and application in an actual complex environment. Based on the bionic variant technology, a novel bionic structure of a water-air cross-domain vehicle is proposed in this paper. Two pairs of variant hydrofoils and folded air wings were designed based on the shape characteristics of the vehicle. Moreover, various actuators have been developed to realize the expansion and contraction of hydrofoils and air wings. To ensure the excellent performance of the vehicle in multi-mode, the hydrodynamic and aerodynamic performances of the undersea vehicle, water surface, and air modes were studied using computational fluid dynamics numerical simulation. The results show that the vehicle can achieve underwater running at a fixed depth, high-speed sailing on the water surface, and fixed-altitude flight in the air. The water-air cross-domain vehicle can not only realize cross-domain operation, but also has the advantages of underwater concealment and air mobility.

     

  • loading
  • [1]
    李宏源, 吕鹏宇, 杜增智, 等. 水下滑移边界减阻技术研究综述[J]. 舰船科学技术, 2022, 44(9): 1-6. doi: 10.3404/j.issn.1672-7649.2022.09.001

    Li Hong-yuan, Lü Peng-yu, Du Zeng-zhi, et al. A Review of Drag Reduction Technology for Underwater Slip Boundary[J]. Ship Science and Technology, 2022, 44(9): 1-6. doi: 10.3404/j.issn.1672-7649.2022.09.001
    [2]
    刘华欣. 仿生跨介质航行器机理研究及原型机工程[D]. 北京: 北京航空航天大学, 2009.
    [3]
    裴譞, 张宇文, 李闻白, 等. 跨介质飞行器气/水两相弹道仿真研究[J]. 工程力学, 2010, 27(8): 223-228.

    Pei Xuan, Zhang Yu-wen, Li Wen-bai, et al. Simulation and Analysis on the Gas/water Two-phase Ballistics of Trans-media Aircraft[J]. Engineering Mechanics, 2010, 27(8): 223-228.
    [4]
    裴譞, 张宇文, 王银涛, 等. 两栖UAV 滑跳动力学特性仿真研究[J]. 计算力学学报, 2011, 28(2): 173-177. doi: 10.7511/jslx201102003

    Pei Xuan, Zhang Yu-wen, Wang Yin-tao, et al. Simulation and Analysis of Slide Jump Dynamic Characteristic of the Amphibious UAV[J]. Journal of Computational Mechanics, 2011, 28(2): 173-177. doi: 10.7511/jslx201102003
    [5]
    裴譞, 张宇文, 袁绪龙, 等. 两栖UAV 动力学建模与仿真[J]. 火力与指挥控制, 2011, 36(1): 10-13. doi: 10.3969/j.issn.1002-0640.2011.01.003

    Pei Xuan, Zhang Yu-wen, Yuan Xu-long, et al. Dynamic Modeling and Simulation of Trans-media Aircraft System[J]. Fire Control & Command Control, 2011, 36(1): 10-13. doi: 10.3969/j.issn.1002-0640.2011.01.003
    [6]
    王伟, 张宇文, 朱灼. 跨介质飞行器弹道仿真分析[J]. 计算机仿真, 2012, 28(12): 1-4. doi: 10.3969/j.issn.1006-9348.2012.12.001

    Wang Wei, Zhang Yu-wen, Zhu Zhuo. Simulation and Analysis on Ballistic Ttrajectory of Trans-media Aircraft[J]. Computer Simulation, 2012, 28(12): 1-4. doi: 10.3969/j.issn.1006-9348.2012.12.001
    [7]
    朱莎. 水空两用无人机动力系统设计与研究[D]. 南昌: 南昌航空大学, 2012.
    [8]
    刘伟. 潜水飞机总体设计与气动外形结构设计分析[D]. 南昌: 南昌航空大学, 2012.
    [9]
    Yang X B, Wang T M, Liang J H, et al. Submersible Unmanned Aerial Vehicle Concept Design Study[C]//Aviation Technology, Integration, and Operations Conference. Reston, USA: AIAA, 2013: 1-12.
    [10]
    Du H, Fan G, Yi J. Autonomous Takeoff Control System Design for Unmanned Seaplanes[J]. Ocean Engineering, 2014, 85: 21-31. doi: 10.1016/j.oceaneng.2014.04.003
    [11]
    Lu D, Xiong C, Zeng Z, et al. A Multimodal Aerial Underwater Vehicle with Extended Endurance and Capabilities[C]// 2019 International Conference on Robotics and Automation. Montreal, Canada: IEEE, 2019: 4674-4680.
    [12]
    Lyu C X, Lu D, Xiong C K, et al. Toward a Giding Hybrid Aerial Underwater Vehicle: Design, Fabrication, and Experiments[J]. Journal of Field Robotics, 2022, 39(5): 543-556. doi: 10.1002/rob.22063
    [13]
    Lu D, Guo Y, Xiong C, et al. Takeoff and Landing Control of a Hybrid Aerial Underwater Vehicle on Disturbed Water’s Surface[J]. IEEE Journal of Oceanic Engineering, 2022, 47(2): 295-311. doi: 10.1109/JOE.2021.3124515
    [14]
    Hu R, Lu D, Xiong C K, et al. Modeling, Characterization and Control of a Piston-driven Buoyancy System for a Hybrid Aerial Underwater Vehicle[J]. Applied Ocean Research, 2022: 120.
    [15]
    Eubank R D, Atkins E M. Unattended Autonomous Mission and System Management of an Unmanned Seaplane[C]//InfoTech and Aerospace. Reston, USA: AIAA, 2011: 1-12.
    [16]
    Eubank R D. Autonomous Flight, Fault, and Energy Management of the Flying Fish Solar-powered Seaplane[D]. Ann Arbor, USA: University of Michigan, 2012.
    [17]
    Eubank R D, Bradley J M, Atkins E M. Energy-aware Multiflight Planning for an Unattended Seaplane: Flying Fish[J]. Journal of Aerospace Information Systems, 2016, 14(2): 1-19.
    [18]
    Costa D, Palmieri G, Palpacelli M C, et al. Design of a Bio-Inspired Autonomous Underwater Robot[J]. Journal of Intelligent & Robotic Systems, 2017, 91(2): 181-192.
    [19]
    Gao A, Techet A H. Design Considerations for a Robotic Flying Fish[C]//Oceans. Piscataway, USA: IEEE, 2011: 1-8.
    [20]
    Lock R J, Vaidyanathan R, Burgess S C, et al. Development of a Biologically Inspired Multi-modal Wing Model for Aerialaquatic Robotic Vehicles[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems. IEEE, 2010.
    [21]
    Lock R J. A Biologically-inspired Multi-modal Wing for Aerialaquatic Robotic Vehicles[D]. Bristol, UK: University of Bristol, 2011.
    [22]
    Siddall R, Kovac M. Fast Aquatic Escape with a Jet Thruster[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(1): 217-226. doi: 10.1109/TMECH.2016.2623278
    [23]
    Zufferey R, Ancel O, Farinha A, et al. Consecutive Aquatic Jump-gliding with Water-reactive Fuel[J]. Science Robotics, 2019, 4(34): 7330. doi: 10.1126/scirobotics.aax7330
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article Views(1105) PDF Downloads(199) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return