• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 31 Issue 5
Oct  2023
Turn off MathJax
Article Contents
FANG Xueli, ZHANG Jiansheng. Research on Spectral Characteristics of Wake Bubble Curtain[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 710-714. doi: 10.11993/j.issn.2096-3920.2022-0020
Citation: FANG Xueli, ZHANG Jiansheng. Research on Spectral Characteristics of Wake Bubble Curtain[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 710-714. doi: 10.11993/j.issn.2096-3920.2022-0020

Research on Spectral Characteristics of Wake Bubble Curtain

doi: 10.11993/j.issn.2096-3920.2022-0020
  • Received Date: 2022-07-26
  • Accepted Date: 2022-09-26
  • Rev Recd Date: 2022-09-08
  • Available Online: 2023-09-25
  • When the ship is sailing, the bubble curtain is generated due to the stirring of the propeller and the influence of the air and sea water, and a wake is formed at the tail of the ship. At present, the research on wake optics mainly focuses on macroscopic sea surface imaging to determine the shape of the wake and the scattering characteristics of the underwater wake bubble curtain. Few scholars have studied the spectral characteristics of the wake bubble curtain. In view of this, the wake bubble curtain was simulated by the generator designed in the laboratory, and the change process of the bubble, including the size and force of the bubble, was analyzed. An optical fiber spectrum acquisition system was used to obtain the transmission spectra of the bubble curtain under different pressures, and the spectral characteristics of the wake bubble curtain under different pressures were analyzed. The results show that the transmission spectrum distribution is roughly the same under different experimental conditions; the bubble concentration has a great influence on the measured values of the spectrum, and higher bubble concentration indicates lower transmission; the measured value of the spectrum is also affected by the different degrees of attenuation of light in different bands in the air. Among them, the long-wave transmission is larger, so the air more absorbs light in the band of 430–550 nm. In comparison, the transmission in the band of 600–730 nm is high.

     

  • loading
  • [1]
    Davis G E. Scattering of light by an air bubble in water[J]. Journal of the Optical Society of America, 1955, 45(7): 572-581. doi: 10.1364/JOSA.45.000572
    [2]
    Arnott W P, Marston P L. Optical glory of small freely rising gas bubbles in water: Observed and computed cross-polarized backscattering patterns[J]. JOSA A, 1988, 5(4): 496-506. doi: 10.1364/JOSAA.5.000496
    [3]
    Langley D S, Marston P L. Forward glory scattering from bubbles[J]. Applied Optics, 1991, 30(24): 3452-8. doi: 10.1364/AO.30.003452
    [4]
    Arnott W P, Marston P L. Unfolded optical glory of spheroids: Backscattering of laser light from freely rising spheroidal air bubbles in water[J]. Applied optics, 1991, 30(24): 3429-3442. doi: 10.1364/AO.30.003429
    [5]
    Stramski D. Gas microbubbles: An assessment of their significance to light scattering in quiescent seas[C]//Society of Photo-Optical Instrumentation Engineers’ 1994, [S.l.]: SPIE, 1994: 704-710.
    [6]
    Takahashi K, Ohuchi S, Saito K, et al. Simultaneous determination of the size and concentration of fine bubbles in water by laser-light scattering[J]. Applied Optics, 2018, 57(2): 225-229. doi: 10.1364/AO.57.000225
    [7]
    张建生. 尾流的光学特性研究与测量[D]. 西安: 中国科学院西安光学精密机械研究所, 2001.
    [8]
    孙春生, 张晓晖. 舰船远程尾流气泡群的前向光散射特性研究[J]. 激光杂志, 2008, 163(4): 40-41. doi: 10.3969/j.issn.0253-2743.2008.04.018

    Sun Chunsheng, Zhang Xiaohui. Study on the forward scattering characteristics of bubbles in warship long-range wake[J]. Laser Journal, 2008, 163(4): 40-41. doi: 10.3969/j.issn.0253-2743.2008.04.018
    [9]
    杨郁, 张建生. 尾流气泡幕后向散射偏振特性研究[J]. 激光与光电子学进展, 2013, 567(4): 57-63.

    Yang Yu, Zhang Jiansheng. Backscatter polarization characteristics of wake bubbles[J]. Laser and Optoelectronics Progress, 2013, 567(4): 57-63.
    [10]
    张帆, 王运鹰, 姚金任, 等. 水下尾流相干探测的理论与实验研究[J]. 中国激光, 2015, 462(6): 267-273.

    Zhang Fan, Wang Yunying, Yao Jinren, et al. Theoretical and experimental study on coherent detection of underwater wake[J]. Chinese Journal of Lasers, 2015, 462(6): 267-273.
    [11]
    李能能. 船舶尾流模拟气泡的前向光散射特性研究[J]. 舰船科学技术, 2018, 40(16): 16-18.

    Li Nengneng. Study on forward light scattering characteristics of simulated bubbles in ship wake[J]. Ship Science and Technology, 2018, 40(16): 16-18.
    [12]
    张瑞瑞. 基于频域理论的船舶尾流光学检测技术研究[J]. 舰船科学技术, 2021, 43(22): 208-210. doi: 10.3404/j.issn.1672-7649.2021.11A.070

    Zhang Ruirui. Optical detection technology of ship wake based on frequency domain theory[J]. Ship Science and Technology, 2021, 43(22): 208-210. doi: 10.3404/j.issn.1672-7649.2021.11A.070
    [13]
    王程英, 张建生. 非线性尾流相互作用研究[J]. 水下无人系统学报, 2020, 28(6): 685-693.

    Wang Chengying, Zhang Jiansheng. Study on nonlinear wake interaction[J]. Journal of Underwater Unmanned Systems, 2020, 28(6): 685-693.
    [14]
    张庆国, 刘竹青, 黄其培, 等. 舰船尾流气泡声学测试系系统研究[J]. 声学技术, 2020, 39(6): 660-668.

    Zhang Qingguo, Liu Zhuqing, Huang Qipei, et al. Research on acoustic measurement system of ship wake bubble[J]. Technical Acoustics, 2020, 39(6): 660-668.
    [15]
    王向坤, 李予国, 李建凯, 等. 有限水深海浪背景下船舶尾流感应电磁场数值模拟[J]. 中国海洋大学学报(自然科学版), 2020, 50(12): 107-114. doi: 10.16441/j.cnki.hdxb.20200014

    Wang Xiangkun, Li Yuguo, Li Jiankai, et al. Numerical simulation of the electromagnetic field in the wake of a ship under the background of waves with limited water depth[J]. Periodical of Ocean University of China, 2020, 50(12): 107-114. doi: 10.16441/j.cnki.hdxb.20200014
    [16]
    王维. 舰船尾流微小气泡幕光学测量技术研究[D]. 北京: 中国科学院大学, 2015.
    [17]
    吕德华, 张建生. 基于光学测量技术的水下船只尾流气泡幕探测技术研究[J]. 机械设计与制造工程, 2020, 19(8): 98-102.

    Lü Dehua, Zhang Jiansheng. Research on the detection technology of bubble curtain in the wake of underwater ships based on optical measurement technology[J]. Mechanical Design and Manufacturing Engineering, 2020, 19(8): 98-102.
    [18]
    唐勐, 张宇. 激光探测尾流微气泡的偏振特性研究[J]. 红外与激光工程, 2020, 49(1): 187-192.

    Tang Meng, Zhang Yu. Study on polarization characteristics of wake microbubbles detected by laser[J]. Infrared and Laser Engineering, 2020, 49(1): 187-192.
    [19]
    张辉, 高晓成. 舰船尾流的光学特性分析及尾流检测技术研究[J]. 舰船科学技术, 2021, 43(24): 52-54.

    Zhang Hui, Gao Xiaocheng. Analysis of optical characteristics of ship wake and Research on wake detection technology[J]. Ship Science and Technology, 2021, 43(24): 52-54.
    [20]
    王羽佳, 宗思光, 张鑫. 基于Mie散射特性的微气泡激光探测仿真与实验研究[J]. 舰船电子工程, 2022, 42(5): 150-153.

    Wang Yujia, Zong Siguang, Zhang Xin. Simulation and experimental study of microbubble laser detection based on Mie scattering characteristics[J]. Ship Electronic Engineering, 2022, 42(5): 150-153.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article Views(247) PDF Downloads(29) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return