• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 30 Issue 4
Sep  2022
Turn off MathJax
Article Contents
LI Hou-quan, FENG Xiao-tao, ZHANG Xiao-fang, ZHAO Zhi-bo. Research on Abnormal Ultra-shallow Shutdown of Undersea Vehicles[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 523-527. doi: 10.11993/j.issn.2096-3920.202112019
Citation: LI Hou-quan, FENG Xiao-tao, ZHANG Xiao-fang, ZHAO Zhi-bo. Research on Abnormal Ultra-shallow Shutdown of Undersea Vehicles[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 523-527. doi: 10.11993/j.issn.2096-3920.202112019

Research on Abnormal Ultra-shallow Shutdown of Undersea Vehicles

doi: 10.11993/j.issn.2096-3920.202112019
  • Received Date: 2021-12-26
  • Rev Recd Date: 2022-03-22
  • Available Online: 2022-07-29
  • Concerning the problem of abnormal ultra-shallow shutdown protection, undersea vehicles navigate at a set depth even if they are not navigating at ultra-shallow protection depths. Various factors that may lead to the abnormal shutdown of undersea vehicles are analyzed. The numerical simulation method is used to analyze the effect of fluid pressure on different positions of the underwater vehicle at different speeds. The distribution law of hydrodynamic errors, which are observed when an abnormal shutdown of undersea vehicles occurs, is obtained based on sea trial data. The numerical simulation and the trials indicate that, when the vehicle navigates near the minimum depth, there will be a fluid pressure difference between the front and back depth transducers on the vehicle, which varies with the speed of the vehicle. When the speed of the vehicle exceeds a certain value, the fluid pressure error will be so large that the back depth transducer will indicate a normal depth while the front transducer will indicate an ultra-shallow state, thus resulting in an abnormal shutdown.

     

  • loading
  • [1]
    Dhanak M R, Xiros N I. Springer Handbook of Ocean Engineering[M]. New York: Springer International Publishing, 2016.
    [2]
    钟宏伟. 国外无人水下航行器装备与技术现状及展望[J]. 水下无人系统学报, 2017, 25(3): 215-225.

    Zhong Hong-wei. Review and Prospect of Equipment and Techniques for Unmanned Undersea Vehicle in Foreign Countries[J]. 2017, 25(3): 215-225.
    [3]
    张安通, 徐令令, 王健, 等. 一种UUV智能应急安全控制自救系统设计[J]. 水下无人系统学报, 2019, 27(5): 548-554.

    Zhang An-tong, Xu Ling-ling, Wang Jian, et al. Design of an Intelligent Emergency Safety Control Self-rescue System for UUV[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 548-554.
    [4]
    孙梦瑶, 刘玉红, 黄明龙, 等. 测量型深水AUV垂直面运动稳定性设计[J]. 机械科学与技术, 2016, 35(9): 1402-1407. doi: 10.13433/j.cnki.1003-8728.2016.0917

    Sun Meng-yao, Liu Yu-hong, Huang Ming-long, et al. Design of Dynamic Stability in Vertical Plane of Autonomous Underwater Vehicle with Measurement Missions[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(9): 1402-1407. doi: 10.13433/j.cnki.1003-8728.2016.0917
    [5]
    高婷, 庞永杰, 王亚兴, 等. 水下航行器水动力系数计算方法[J]. 哈尔滨工程大学学报, 2019, 40(1): 174-180. doi: 10.11990/jheu.201709100

    Gao Ting, Pang Yong-jie, Wang Ya-xing, et al. Calculation Method of Hydrodynamic Coefficients for Underwater Vehi- cles[J]. Journal of Harbin Engineering University, 2019, 40(1): 174-180. doi: 10.11990/jheu.201709100
    [6]
    袁常乐, 万德成. 不同雷诺数下圆柱流噪声分析[J]. 中国造船, 2020, 61(z2): 75-82. doi: 10.3969/j.issn.1000-4882.2020.z2.008

    Yuan Chang-le, Wan De-cheng. Analysis of Underwater Radiation Noise of Cylinder at Different Reynolds Num- bers[J]. Shipbuilding of China, 2020, 61(z2): 75-82. doi: 10.3969/j.issn.1000-4882.2020.z2.008
    [7]
    严卫生. 鱼雷航行力学[M]. 西安: 西北工业大学出版社, 2005.
    [8]
    黄景泉, 张宇文. 航行器流体力学[M]. 西安: 西北工业大学出版社, 1989.
    [9]
    王在铎, 王威, 张孝石. 表面特性对水下航行器流体动力的影响研究[J]. 鱼雷技术, 2015, 23(5): 321-325.

    Wang Zai-duo, Wang Wei, Zhang Xiao-shi. Influences of Surface Characteristcs of Underwater Vehicle on its Hydro- dynamic Properties[J]. Torpedo Technology, 2015, 23(5): 321-325.
    [10]
    章乐多. 水下航行器基础运动控制仿真研究[J]. 舰船电子工程, 2021, 41(3): 157-161. doi: 10.3969/j.issn.1672-9730.2021.03.038

    Zhang Le-duo. Research of Simulation of UUV Basic Motion Control[J]. Ship Electronic Engineering, 2021, 41(3): 157-161. doi: 10.3969/j.issn.1672-9730.2021.03.038
    [11]
    吴乃龙, 吴超, 葛彤, 等. 基于鱼类体线感知机理的水下机器人水流场识别研究[J]. 机械工程学报, 2016, 52(13): 54-59. doi: 10.3901/JME.2016.13.054

    Wu Nai-long, Wu Chao, Ge Tong, et al. Flow Recognition of Underwater Vehicle Based on the Perception Mechanism of Lateral Line[J]. Journal of Mechanical Engineering, 2016, 52(13): 54-59. doi: 10.3901/JME.2016.13.054
    [12]
    曹晓明, 魏勇, 衡辉, 等. 海流扰动下无人水下航行器的动态面反演轨迹跟踪控制[J]. 系统工程与电子技术, 2021, 43(6): 1664-1672.

    Cao Xiao-ming, Wei Yong, Heng Hui, et al. Dynamic Surface Backstepping Trajectory Control of Unmanned Underwater Vellicles with Ocean Current Disturbances[J]. Systems Engineering and Electronics, 2021, 43(6): 1664-1672.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article Views(287) PDF Downloads(26) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return