
| Citation: | LIANG Hongtao, KANG Fengju. Adaptive Flocking Control for Crowded UUV Swarm with Time-Delay Constraint[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 221-228, 258. doi: 10.11993/j.issn.2096-3920.202112012 |
| [1] |
Fischell E M, Kroo A R, Neill B W. Single-hydrophone low-cost underwater vehicle swarming[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 354-361. doi: 10.1109/LRA.2019.2958774
|
| [2] |
Liang H T, Fu Y F, Kang F J, et al. A behavior-driven coordination control framework for target hunting by UUV intelligent swarm[J]. IEEE Access, 2020, 8(1): 4838-59.
|
| [3] |
Liang H T, Cao H, Fu Y F. Decentralized adaptive flocking control algorithm with avoiding collision and preserving connectivity for crowded UUV swarm with uncertainties and input saturation[J]. Ocean Engineering, 2021, 237: 109545. doi: 10.1016/j.oceaneng.2021.109545
|
| [4] |
Liang H T, Fu Y F, Gao J, et al. Finite-time velocity-observed based adaptive output-feedback trajectory tracking formation control for underactuated unmanned underwater vehicles with prescribed transient performance[J]. Ocean Engineering, 2021, 233: 109071. doi: 10.1016/j.oceaneng.2021.109071
|
| [5] |
Peng Z H, Wang J, Wang D, et al. An overview of recent advances in coordinated control of multiple autonomous surface vehicles[J]. IEEE Transactions on Industrial Informatics, 2021, 17(2): 732-745. doi: 10.1109/TII.2020.3004343
|
| [6] |
Oh H, Ramezan S, Ataollah S, et al. Bio-inspired self-organising multi-robot pattern formation: A review[J]. Robotics & Autonomous Systems, 2017, 91: 83-100.
|
| [7] |
Petersen K H, Napp N, Stuart-Smith R, et al. A review of collective robotic construction[J]. Science Robotics, 2019, 28(4): 8479.
|
| [8] |
Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbour rules[J]. IEEE Transactions on Automatic Control, 2003, 48(6): 988-1001. doi: 10.1109/TAC.2003.812781
|
| [9] |
Morteza M, Nader M, Farzaneh A. Robust consensus of autonomous underactuated surface vessels[J]. IET Control Theory & Applications, 2017, 11(4): 486-494.
|
| [10] |
Ling H J, Guillam E M, Kasper V V, et al. Local interactions and their group-level consequences in flocking jackdaws[J]. Proceedings of Royal Society B, 2019, 286: 20190865. doi: 10.1098/rspb.2019.0865
|
| [11] |
Ariana S P, Colin, R T, Nikolai W F, et al. Visual sensory networks and effective information transfer in animal groups[J]. Current Biology, 2013, 23(17): 709-711. doi: 10.1016/j.cub.2013.07.059
|
| [12] |
张令, 段海滨, 雍婷, 等. 基于寒鸦配对交互行为的无人机集群编队控制[J]. 北京航空航天大学学报, 2021, 47(2): 391-397.
Zhang Ling, Duan Haibin, Yong Ting, et al. Unmanned aerial vehicle swarm formation control based on paired interaction mechanism in jackdaws[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 391-397.
|
| [13] |
雷小康, 刘明雍, 杨盼盼. 基于邻域跟随的群集系统分群控制算法[J]. 控制与决策, 2013, 28(5): 741-745.
Lei Xiaokang, Liu Mingyong, Yang Panpan. Fission control algorithm for swarm based on local following interaction[J]. Control and Decision, 2013, 28(5): 741-745.
|
| [14] |
Liang H T, Fu Y F, Gao J. Bio-inspired self-organized cooperative control consensus for crowded UUV swarm based on adaptive dynamic interaction topology[J]. Applied Intelligence, 2021, 51: 4664-4681. doi: 10.1007/s10489-020-02104-5
|
| [15] |
Kubota T. Investigation of obstacle avoidance algorithm in paired-driving autonomous mobile robots revealed by mimicking ultrasonic sensing in bats[J]. The Journal of the Acoustical Society of America, 2019, 146: 2959.
|
| [16] |
张伟, 王乃新, 魏世琳, 等. 水下无人潜航器集群发展现状及关键技术综述[J]. 哈尔滨工程大学学报, 2020, 41(2): 289-297. doi: 10.11990/jheu.201909039
Zhang Wei, Wang Naixin, Wei Shilin, et al. Overview of unmanned underwater vehicle swarm development status and key technologies[J]. Journal of Harbin Engineering University, 2020, 41(2): 289-297. doi: 10.11990/jheu.201909039
|
| [17] |
杨盼盼, 张瑾琪, 刘家毓. 水声通信时延下集群式AUV分群控制算法[J]. 兵器装备工程学报, 2018, 39(12): 113-117. doi: 10.11809/bqzbgcxb2018.12.023
Yang Panpan, Zhang Jinqi, Liu Jiayu. Fission control algorithm for swarm underwater vehicles with acoustic communication delay[J]. Journal of Ordnance Equipment Engineering, 2018, 39(12): 113-117. doi: 10.11809/bqzbgcxb2018.12.023
|
| [18] |
Yan Z P, Liu Y B, Zhou J J, et al. Consensus of multiple autonomous underwater vehicles with double independent markovian switching topologies and time varying delays[J]. Chinese Physics B, 2017, 26(4): 040203. doi: 10.1088/1674-1056/26/4/040203
|
| [19] |
Yan Z P, Yang Z W, Yue L D, et al. Discrete-time coordinated control of leader-following multiple AUVs under switching topologies and communication delays[J]. Ocean Engineering, 2019, 172: 361-372. doi: 10.1016/j.oceaneng.2018.12.018
|
| [20] |
李沛, 段海滨. 一种基于注意力机制的群集运动模型[J]. 中国科学: 科学技术, 2019, 49(9): 1040-50. doi: 10.1360/N092018-00135
Li Pei, Duan Haibin. A flocking model base on selective attention mechanism[J]. Scientia Sinica: Technologica, 2019, 49(9): 1040-50. doi: 10.1360/N092018-00135
|
| [21] |
刘磊, 孙卓文, 陈令仪, 等. 基于深度学习的仿生集群运动智能控制[J]. 控制与决策, 2021, 36(9): 2195-02.
Liu Lei, Sun Zhuowen, Chen Lingyi, et al. Intelligent control of bionic collective motion based on deep learning[J]. Control and Decision, 2021, 36(9): 2195-02.
|
| [22] |
Sahu B, Subudhi B. Flocking control of multiple AUVs based on fuzzy potential functions[J]. IEEE Transactions on Fuzzy System, 2018, 26(5): 2539-51. doi: 10.1109/TFUZZ.2017.2786261
|