• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 30 Issue 4
Sep  2022
Turn off MathJax
Article Contents
QIN Yue, WANG Guan-lin, GUAN Sheng, WANG Yan-feng, DING Jun-hang. Motion Simulation of Spatial Sampling of Mesoscale Processes for Underwater Gliders[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 474-484. doi: 10.11993/j.issn.2096-3920.202112003
Citation: QIN Yue, WANG Guan-lin, GUAN Sheng, WANG Yan-feng, DING Jun-hang. Motion Simulation of Spatial Sampling of Mesoscale Processes for Underwater Gliders[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 474-484. doi: 10.11993/j.issn.2096-3920.202112003

Motion Simulation of Spatial Sampling of Mesoscale Processes for Underwater Gliders

doi: 10.11993/j.issn.2096-3920.202112003
  • Received Date: 2021-12-06
  • Rev Recd Date: 2022-03-01
  • Available Online: 2022-07-29
  • Marine mesoscale processes, including vortices, fronts, and internal waves, are a class of important dynamic processes in the ocean that have a significant influence on global climate change and the transport of marine energy, heat, and materials. The observation and investigation of such processes also have important practical significance in the field of marine resources, organism exploration, and military domains. Underwater gliders have recently become important devices for observing mesoscale processes. “Petrel-Ⅱ,” a type of autonomous underwater glider, is considered the main focus of this study. First, a dynamics model is established based on the momentum and angular momentum theorems. Simulink is then used to confirm the feasibility of the proposed model. According to the simulation results, the proposed dynamic model can realize motion simulation well. Finally, based on the different requirements for the detection of several mesoscale processes, different sampling motion schemes are presented, and a motion simulation of spatial sampling is provided. This study could provide a reference and optimization parameters for future practical observations and applications.

     

  • loading
  • [1]
    郑瑞玺, 经志友, 罗士浩. 南海北部反气旋涡旋边缘的次中尺度动力过程分析[J]. 热带海洋学报, 2018, 37(3): 19-25.

    Zheng Rui-xi, Jing Zhi-you, Luo Shi-hao. Analysis of sub-mesoscale Dynamic Processes in the Periphery of Anticyclonic Eddy in the Northern South China Sea[J]. Journal of Tropical Oceangraphy, 2018, 37(3): 19-25.
    [2]
    Li S, Wang S, Zhang F, et al. Constructing the Three-dimensional Structure of an Anticyclonic Eddy in the South China Sea Using Multiple Underwater Gliders[J]. Journal of Atmospheric and Oceanic Technology, 2019, 36(12): 2449-2470. doi: 10.1175/JTECH-D-19-0006.1
    [3]
    范聪慧, 于非, 南峰, 等. 基于无人船的大洋中尺度涡观测系统展望[J]. 海洋科学集刊, 2016, 51(1): 49-57. doi: 10.12036/hykxjk20160719002

    Fan Cong-hui, Yu Fei, Nan Feng, et al. Prospects for Unmanned Observation System of the Oceanic Mesoscale Eddy[J]. Studia Marina Sinica, 2016, 51(1): 49-57. doi: 10.12036/hykxjk20160719002
    [4]
    任诗鹤, 王辉, 刘娜. 中国近海海洋锋和锋面预报研究进展[J]. 地球科学进展, 2015, 30(5): 552-563. doi: 10.11867/j.issn.1001-8166.2015.05.0552

    Ren Shi-he, Wang Hui, Liu Na. Review of Ocean Front in Chinese Marginal Seas and Frontal Forecasting[J]. Advances in Earth Science, 2015, 30(5): 552-563. doi: 10.11867/j.issn.1001-8166.2015.05.0552
    [5]
    田纪伟, 黄晓冬. 认知和驾驭全球海洋最强内孤立波: 南海北部内孤立波[J]. 科技纵览, 2018(7): 76-77. doi: 10.3969/j.issn.2095-4409.2018.07.032
    [6]
    Chelton D B, Schlax M G, Samelson R M. Global Observations of Nonlinear Mesoscale Eddies[J]. Progress in Oceanography, 2011, 91(2): 167-216. doi: 10.1016/j.pocean.2011.01.002
    [7]
    Liu A K, Ramp S R, Zhao Y, et al. A Case Study of Internal Solitary Wave Propagation during ASIAEX 2001[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1144-1156. doi: 10.1109/JOE.2004.841392
    [8]
    Simmons H, Chang M H, Chang Y T, et al. Modeling and Prediction of Internal Waves in the South China Sea[J]. Oceanography, 2011, 24(4): 88-99. doi: 10.5670/oceanog.2011.97
    [9]
    杨廷龙. 日本海海洋锋及涡旋的统计分析[D]. 青岛: 自然资源部第一海洋研究所, 2021.
    [10]
    Alford M H, Mickett J B, Zhang S, et al. Internal Waves on the Washington Continental Shelf[J]. Oceanography, 2012, 25(2): 66-79. doi: 10.5670/oceanog.2012.43
    [11]
    Johnston T M S, Rudnick D L, Alford M H, et al. Internal Tidal Energy Fluxes in the South China Sea from Density and Velocity Measurements by Gliders[J]. Journal of Geophysical Research: Oceans, 2013, 118(8): 3939-3949. doi: 10.1002/jgrc.20311
    [12]
    Fan X, Send U, Testor P, et al. Observations of Irminger Sea Anticyclonic Eddies[J]. Journal of Physical Oceanography, 2013, 43(4): 805-823. doi: 10.1175/JPO-D-11-0155.1
    [13]
    Li S, Wang S, Zhang F, et al. Observing an Anticyclonic Eddy in the South China Sea Using Multiple Underwater Gliders[C]//OCEANS 2018 MTS/IEEE Charleston. Charleston: IEEE, 2018.
    [14]
    Li S, Zhang F, Wang S, et al. Constructing the Three-Dimensional Structure of an Anticyclonic Eddy with the Optimal Configuration of an Underwater Glider Network[J]. Applied Ocean Research, 2020, 95: 101893. doi: 10.1016/j.apor.2019.101893
    [15]
    刘方. 混合驱动水下滑翔机系统设计与运动行为研究[D]. 天津: 天津大学, 2014.
    [16]
    李天森. 鱼雷操纵性[M]. 北京: 国防工业出版社, 2007.
    [17]
    Wang Y, Niu W, Yu X, et al. Quantitative Evaluation of Motion Performances of Underwater Gliders Considering Ocean Currents[J]. Ocean Engineering, 2021, 236: 109501. doi: 10.1016/j.oceaneng.2021.109501
    [18]
    Flexas M M, Troesch M I, Chien S, et al. Autonomous Sampling of Ocean Submesoscale Fronts with Ocean Gliders and Numerical Model Forecasting[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35(3): 503-521. doi: 10.1175/JTECH-D-17-0037.1
    [19]
    谢旭丹, 王静, 储小青, 等. 南海中尺度涡温盐异常三维结构[J]. 海洋学报, 2018, 40(4): 1-14.

    Xie Xu-dan, Wang Jing, Chu Xiao-qing, et al. Three-dimensional Thermohaline Anomaly Structures of Me-soscale Eddies in the South China Sea[J]. Acta Oceanologica Sinica, 2018, 40(4): 1-14.
    [20]
    杨绍琼, 成丹, 陈光耀, 等. 面向典型海洋现象观测的水下滑翔机应用综述[J]. 热带海洋学报, 2022, 41(3): 54-74. doi: 10.11978/2021066

    Yang Shao-qiong, Cheng Dan, Chen Guang-yao, et al. Re- view on the Application of Underwater Gliders for Obs- erving Typical Ocean Phenomena[J]. Journal of Tropical Oceanography, 2022, 41(3): 54-74. doi: 10.11978/2021066
    [21]
    Farrar J T, D’Asaro E, Rodriguez E, et al. S-MODE: The Sub-Mesoscale Ocean Dynamics Experiment[C]//2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa: IEEE, 2020.
    [22]
    沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.

    Shen Xin-rui, Wang Yan-hui, Yang Shao-qiong, et al. Development of Underwater Gliders: An Overview and Prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 89-106.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(26)  / Tables(2)

    Article Metrics

    Article Views(407) PDF Downloads(33) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return