• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 30 Issue 4
Sep  2022
Turn off MathJax
Article Contents
GAO Peng, WAN Lei, XU Yu-fei, CHEN Guo-fang, ZHANG Zi-yang. Waypoint-tracking Control of a Benthic AUV Based on Model-free Adaptive Control Method[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 429-440. doi: 10.11993/j.issn.2096-3920.202109021
Citation: GAO Peng, WAN Lei, XU Yu-fei, CHEN Guo-fang, ZHANG Zi-yang. Waypoint-tracking Control of a Benthic AUV Based on Model-free Adaptive Control Method[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 429-440. doi: 10.11993/j.issn.2096-3920.202109021

Waypoint-tracking Control of a Benthic AUV Based on Model-free Adaptive Control Method

doi: 10.11993/j.issn.2096-3920.202109021
  • Received Date: 2021-09-30
  • Accepted Date: 2021-11-15
  • Rev Recd Date: 2021-10-26
  • Available Online: 2022-06-27
  • In this study, the model-free adaptive control(MFAC) method was applied to a waypoint-tracking control system to solve the problems of high uncertainty in the marine environment and difficulty in accurately determining the benthic autonomous undersea vehicle(AUV) model parameters. Moreover, an improved MFAC course controller was designed and the boundedness of the course control error was verified to solve the problems of a slow convergence rate and low tracking accuracy during course control due to the integral additive effect of the traditional MFAC method. Subsequently, a hyperbolic tangent speed adjustment strategy was proposed to solve the problem whereby the course control overshoot of the AUV is large at the waypoint switch when the closed line of sight(LOS) guidance algorithm is applied to waypoint-tracking control. And this strategy can significantly promote the smooth transition of the AUV at the waypoint switch and improve the convergence speed of the tracking error. Finally, an outfield test of the course control and waypoint-tracking control of the benthic AUV was conducted to verify the effectiveness and superiority of the proposed algorithm.

     

  • loading
  • [1]
    Kanazawa T, Shinohara M, Sakai S, et al. Development of Compact Ocean Bottom Cabled Seismometers System for Spatially Dense Observationon Sea Floor and First Installation Plan[C]//Oceans 2009-Europe. Bremen, Germany: IEEE, 2009: 1-7.
    [2]
    Quadt E, Detomo R, Pirmez C, et al. Ocean Bottom Node Seismic at the Deepwater Bonga Field, Nigeria [C]//International Petroleum Technology Conference. Beijing, China: European Association of Geoscientists & Engineers, 2013.
    [3]
    Lecerf D, Lafram A, Boelle J, et al. Ocean Bottom Node Processing in Deep Offshore Environment for Reservoir Monitoring[C]//12th International Congress of the Brazilian Geophysical Society & Expogef. Rio de Janeiro, Brazil: Society of Exploration Geophysicists, 2011.
    [4]
    Qin H, Wu Z, Zhu Z, et al. Design of a Flying Node AUV for Ocean Bottom Seismicobservations[C]//2018 Oceans-MTS/ IEEE Kobe Techno-Oceans(OTO). Kobe, Japan: IEEE, 2018.
    [5]
    Holloway A, Grant D, Watts G, et al. The Future of Deepwater Ocean Bottom Seismic Are Flying Nodes the Next Big Step[C]//SEG International Exposition and Annual Meeting. New Orleans, Louisiana: Society of Exploration Geophysicists, 2015: 115-119.
    [6]
    Qin H D, Wu Z Y, Sun Y C, et al. Prescribed Performance Adaptive Fault-tolerant Trajectory Tracking Control for an Ocean Bottom Flying Node[J]. Int. J Adv. Robot Syst., 2019, 16(3): 13.
    [7]
    Abdurahman B, Savvaris A, Tsourdos A. A Switching LOS Guidance with Relative Kinematics for Path-Following of Underactuated Underwater Vehicles[J]. Ifac Papersonline, 2017, 50(1): 2290-5. doi: 10.1016/j.ifacol.2017.08.228
    [8]
    Huang X, Li Y, Du F, et al. Horizontal Path Following for Underactuated AUV Based on Dynamic Circle Guidance[J]. Robotica, 2017, 35(4): 876-91. doi: 10.1017/S0263574715000867
    [9]
    Elmokadem T, Zribi M, Youcef-Toumi K. Control for Dynamic Positioning and Way-point Tracking of Underactuated Autonomous Underwater Vehicles Using Sliding Mode Control[J]. J. Intell Robot Syst., 2019, 95(3-4): 1113-32. doi: 10.1007/s10846-018-0830-8
    [10]
    Hou Z, Jin S. A Novel Data-driven Control Approach for a Class of Discrete-time Nonlinear Systems[J]. IEEE Trans. Control Syst. Technol, 2011, 19(6): 1549-1558. doi: 10.1109/TCST.2010.2093136
    [11]
    Li H, Zheng S, Ren H. Self-correction of Commutation Point for High-speed Sensorless BLDC Motor with Low Inductance and Nonideal Back EMF[J]. IEEE Trans. Power Electron., 2017, 32(1): 642-651. doi: 10.1109/TPEL.2016.2524632
    [12]
    Lu C, Zhao Y, Men K, et al. Wide-area Power System Stabiliser Based on Model-free Adaptive Control[J]. Control Theory Appl., 2015, 9(13): 1996-2007. doi: 10.1049/iet-cta.2014.1289
    [13]
    Li Z, Xia Y, Qu Z. Data-driven Background Representation Method to Video Surveillance[J]. Opt. Soc. Amer. A, Opt. Image Sci., 2017, 34(2): 193-202. doi: 10.1364/JOSAA.34.000193
    [14]
    Tian T T, Hou Z S, Liu S D, et al. Model-free Adaptive Control Based Lateral Control of Self-driving Car[J]. Acta Autom. Sin., 2017, 43(1): 1931-1940.
    [15]
    田涛涛, 侯忠生, 刘世达, 等. 基于无模型自适应控制的无人驾驶汽车横向控制方法[J]. 自动化学报, 2017, 43(11): 1931-1940.

    Tian Tao-tao, Hou Zhong-sheng, Liu Shi-da, et al. Model-free Adaptive Control Based Lateral Control of Self-driving Car[J]. Acta Automatica Sinica, 2017, 43(11): 1931-1940.
    [16]
    夏青元, 徐锦法, 张梁. 倾转旋翼飞行器无模型自适应姿态控制[J]. 系统工程与电子技术, 2013, 35(1): 146-151.

    Xia Qing-yuan, Xu Jin-fa, Zhang Liang. Model-free Adaptive Attitude Controller for a Tilt-rotor Aircraft[J]. Systems Engineering and Electronics, 2013, 35(1): 146-151.
    [17]
    Xu D, Jiang B, Shi P. A Novel Model-free Adaptive Control Design for Multivariable Industrial Processes[J]. IEEE Trans. Ind. Electron., 2014, 61(11): 6391-6398. doi: 10.1109/TIE.2014.2308161
    [18]
    Hou Z S, Xiong S S. On Model-Free Adaptive Control and Its Stability Analysis[J]. IEEE Trans Autom Control, 2019, 64(11): 4555-69. doi: 10.1109/TAC.2019.2894586
    [19]
    Liao Y L, Jiang Q Q, Du T P, et al. Redefined Output Model-Free Adaptive Control Method and Unmanned Surface Vehicle Heading Control[J]. IEEE J Ocean Eng, 2020, 45(3): 714-23. doi: 10.1109/JOE.2019.2896397
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)

    Article Metrics

    Article Views(2793) PDF Downloads(85) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return