• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 30 Issue 5
Oct  2022
Turn off MathJax
Article Contents
LI Ju-chen, HU Yu-li, GAO Jian, ZENG Li-teng, ZHENG Yi, DAI Wen-shuai. State of Health Estimation of Li-ion Batteries Based on GWO-LSSVM[J]. Journal of Unmanned Undersea Systems, 2022, 30(5): 550-557, 566. doi: 10.11993/j.issn.2096-3920.202109007
Citation: LI Ju-chen, HU Yu-li, GAO Jian, ZENG Li-teng, ZHENG Yi, DAI Wen-shuai. State of Health Estimation of Li-ion Batteries Based on GWO-LSSVM[J]. Journal of Unmanned Undersea Systems, 2022, 30(5): 550-557, 566. doi: 10.11993/j.issn.2096-3920.202109007

State of Health Estimation of Li-ion Batteries Based on GWO-LSSVM

doi: 10.11993/j.issn.2096-3920.202109007
  • Received Date: 2021-09-10
  • Rev Recd Date: 2022-01-06
  • Available Online: 2022-09-15
  • The algorithms currently applied to state of health(SOH) estimation require numerous data samples for training and the estimation effect is not good. To address this issue, this study proposed a least-squares support vector machine(LSSVM) algorithm based on the grey wolf optimization(GWO) algorithm to estimate the SOH using the grey relational analysis method to choose constant current charging time as the input characteristic. Considering the 18650 lithium cobalt oxide battery charge/discharge cycle test as an example, the established algorithm model was used to estimate the SOH of batteries with different capacity specifications under different proportions of training set samples. The estimated results were compared with those obtained by the LSSVM algorithm based on the grid search method and the LSSVM algorithm based on the particle swarm optimization algorithm. The experimental results showed that the LSSVM algorithm model based on the GWO algorithm is suitable for small-sample data and is characterized by small estimation errors; therefore, it is more effective for battery SOH.

     

  • loading
  • [1]
    张金龙, 佟微, 孙叶宁, 等. 锂电池健康状态估算方法综述[J]. 电源学报, 2017, 15(2): 128-134.

    Zhang Jin-long, Tong Wei, Sun Ye-ning, et al. Summarize of Lithium Battery Status of Health Estimation Method[J]. Journal of Power Supply, 2017, 15(2): 128-134.
    [2]
    Khare N, Singh P, Vassiliou J K. A Novel Magnetic Field Probing Technique for Determining State of Health of Sealed Lead-Acid Batteries[J]. Journal of Power Sources, 2012, 218: 462-473. doi: 10.1016/j.jpowsour.2012.06.085
    [3]
    Li Y, Abdel-Monem M, Gopalakrishnan R, et al. A Quick On-Line State of Health Estimation Method for Li-Ion Battery with Incremental Capacity Curves Processed by Gaussian Filter[J]. Journal of Power Sources, 2018, 373: 40-53. doi: 10.1016/j.jpowsour.2017.10.092
    [4]
    Ning G, White R E, Popov B N. A Generalized Cycle Life Model of Rechargeable Li-Ion Batteries[J]. Electrochimica Acta, 2006, 51(10): 2012-2022. doi: 10.1016/j.electacta.2005.06.033
    [5]
    Remmlinger J, Buchholz M, Meiler M, et al. State-of- Health Monitoring of Lithium-Ion Batteries in Electric Vehicles by on-Board Internal Resistance Estimation[J]. Journal of Power Sources, 2011, 196(12): 5357-5363. doi: 10.1016/j.jpowsour.2010.08.035
    [6]
    何发尧, 胡欲立, 郭广华, 等. 基于人工神经网络估算锂离子电池的SOH[J]. 电源技术, 2017, 41(5): 708-710. doi: 10.3969/j.issn.1002-087X.2017.05.013

    He Fa-yao, Hu Yu-li, Guo Guang-hua, et al. State of Health Estimation for Lithium-ion Batteries Based on ANN[J]. Chinese Journal of Power Sources, 2017, 41(5): 708-710. doi: 10.3969/j.issn.1002-087X.2017.05.013
    [7]
    Xie J, Li W, Hu Y. Aviation Lead-Acid Battery State-of-Health Assessment Using PSO-SVM Technique[C]//Proceedings of 2014 IEEE 5th International Conference on Software Engineering and Service Science. Beijing: IEEE, 2014.
    [8]
    Widodo A, Shim M C, Caesarendra W, et al. Intelligent Prognostics for Battery Health Monitoring Based on Sample Entropy[J]. Expert Systems with Applications, 2011, 38(9): 11763-11769. doi: 10.1016/j.eswa.2011.03.063
    [9]
    刘思峰, 蔡华, 杨英杰. 灰色关联分析模型研究进展[J]. 系统工程理论与实践, 2013, 33(8): 2041-2046. doi: 10.3969/j.issn.1000-6788.2013.08.018

    Liu Si-feng, Cai Hua, Yang Ying-jie, et al. Advance in Grey Incidence Analysis Modelling[J]. Systems Engineerings-Theory & Practice, 2013, 33(8): 2041-2046. doi: 10.3969/j.issn.1000-6788.2013.08.018
    [10]
    顾燕萍, 赵文杰, 吴占松. 最小二乘支持向量机的算法研究[J]. 清华大学学报(自然科学版), 2010, 50(7): 1063-1066.

    Gu Yan-ping, Zhao Wen-jie, Wu Zhan-song. Least Squares Support Vector Machine Algorithm[J]. Journal of Tsinghua University(Science and Technology), 2010, 50(7): 1063-1066.
    [11]
    Mirjalili S, Mirjalili S M, Lewis A. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. doi: 10.1016/j.advengsoft.2013.12.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article Metrics

    Article Views(387) PDF Downloads(39) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return