• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 30 Issue 4
Sep  2022
Turn off MathJax
Article Contents
WANG Jia-wen, QI Xiao-bin, WANG Rui, LI Rui-jie, LIANG Jing-qi. Numerical Simulation of Underwater Gas Jet Fields with the Continuous Change of Ambient Pressure[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 500-506. doi: 10.11993/j.issn.2096-3920.202108017
Citation: WANG Jia-wen, QI Xiao-bin, WANG Rui, LI Rui-jie, LIANG Jing-qi. Numerical Simulation of Underwater Gas Jet Fields with the Continuous Change of Ambient Pressure[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 500-506. doi: 10.11993/j.issn.2096-3920.202108017

Numerical Simulation of Underwater Gas Jet Fields with the Continuous Change of Ambient Pressure

doi: 10.11993/j.issn.2096-3920.202108017
  • Received Date: 2021-08-17
  • Rev Recd Date: 2021-10-14
  • Available Online: 2022-07-29
  • Deep-sea antisubmarine missiles undergo significant changes in water depth during underwater navigation. It is of great importance to study the structure of the gas jet and working characteristics of the underwater solid propellant rocket engine of antisubmarine missiles during continuous changes in environmental depth pressure. Utilizing the volume of fluid (VOF) multiphase model, this study combines the user-defined function (UDF) with the dynamic mesh technique to establish an axisymmetric dynamic model of an underwater solid propellant rocket engine, as well as simulates the process of vertical motion of the underwater engine to a depth of 250 m. The results show that the gas jet no longer breaks and strikes back at the end of the nozzle during underwater motion. During the formation of the supersonic jet, the shock wave is gradually pushed out of the nozzle outlet, and finally, a conical shock wave with a fixed position is formed. Below a depth of 100 m, the flow field characteristics of the gas jet are significantly affected by the ambient pressure, and the flow field structure shows apparent compressibility. At a speed of 200 m/s, the gas jet obstruction effect is weakened, which reduces the effect of the ambient pressure on the working characteristics of the underwater engine. The study of the flow field characteristics of underwater gas jets subjected to continuous changes in ambient pressure can provide a reference for exploring the working performance of underwater engines in deep-water vertical motion.

     

  • loading
  • [1]
    林宗祥, 孙永侃, 熊正祥. 国外反潜导弹武器系统综述[J]. 飞航导弹, 2011(2): 50-54.
    [2]
    魏征, 杜度, 刘洋, 等. 美国反潜装备技术发展研究[J]. 舰船科学技术, 2019, 41(9): 154-157.

    Wei Zheng, Du Du, Liu Yang, et al. Research on the Development of Anti-submarine Equipment and Technology[J]. Ship Science and Technology, 2019, 41(9): 154-157.
    [3]
    Ketter T N. Anti-Submarine Warfare Concept of Operations for the 21st Century[R]. Newport: Naval War College, 2004.
    [4]
    张有为. 固体火箭发动机水下工作特性的研究[D]. 合肥: 中国科学技术大学, 2007.
    [5]
    Hassan Z M. Nozzle Analyze of Under Water Missiles[C]//37th AIAA Conference & Exhibit. Lake City, UT, U.S.A: American Institute of Aeronautics and Astronautics, 2001, 3277: 1-9.
    [6]
    Dai Z Q, Wang B Y, Shi H H, et al. Experimental Study on Hydrodynamic Behaviors of High-speed Gas Jet in Still Water[J]. Acta Mechanica Sinica, 2006, 22: 443-448. doi: 10.1007/s10409-006-0029-2
    [7]
    许海雨, 罗凯, 刘日晨, 等. 水下超声速气流流场非定常特性研究[J]. 推进技术, 2019, 40(11): 2618-2625.

    Xu Hai-yu, Luo Kai, Liu Ri-chen, et al. Research on Unsteady Characteristics of Underwater Supersonic Gas Jet[J]. Journal of Propulsion Technology, 2019, 40(11): 2618-2625.
    [8]
    王宝寿, 许晟, 易淑群, 等. 水下推力矢量特性试验研究[J]. 船舶力学, 2000, 4(5): 9-15.

    Wang Bao-shou, Xu Sheng, Yi Shu-qun, et al. Test Studies of Underwater Thrust Vector Control Performance[J]. Journal of Ship Mechanics, 2000, 4(5): 9-15.
    [9]
    王利利, 刘影, 李达钦, 等. 固体火箭发动机水下超声速射流数值研究[J]. 兵工学报, 2019, 40(6): 1161-1170. doi: 10.3969/j.issn.1000-1093.2019.06.006

    Wang Li-li, Liu Ying, Li Da-qin, et al. Numerical Study of Underwater Supersonic Gas Jets for Solid Rocket Engine[J]. Acta Armamentarii, 2019, 40(6): 1161-1170. doi: 10.3969/j.issn.1000-1093.2019.06.006
    [10]
    祁晓斌, 袁绪龙, 徐保成, 等. 导弹水下发射近筒口点火时机选择影响研究[J]. 推进技术, 2019, 40(7): 1449-1457.

    Qi Xiao-bin, Yuan Xu-long, Xu Bao-cheng, et al. Research on Ignition Timing Choice for Near-tube Underwater Vertical Launching Missile[J]. Journal of Propulsion Technology, 2019, 40(7): 1449-1457.
    [11]
    张磊. 大水深火箭发动机尾流场数值模拟[J]. 固体火箭技术, 2019, 42(2): 159-163.

    Zhang Lei. Numerical Simulation of Tail Flow Field for Underwater Solid Rocket Motor[J]. Journal of Solid Rocket Technology, 2019, 42(2): 159-163.
    [12]
    陈启林. 水下燃气射流数值仿真与试验研究[D]. 北京: 北京理工大学, 2016.
    [13]
    张春, 郁伟, 王宝寿, 等. 水下超声速燃气射流的初期流场特性研究[J]. 兵工学报, 2018, 39(5): 961-968. doi: 10.3969/j.issn.1000-1093.2018.05.016

    Zhang Chun, Yu Wei, Wang Bao-shou, et al. Research on the Initial Flow Field Characteristics of Underwater Supersonic Gas Jets[J]. Acta Armamentaria, 2018, 39(5): 961-968. doi: 10.3969/j.issn.1000-1093.2018.05.016
    [14]
    唐云龙. 深水条件下固体火箭发动机燃气射流与推力特性研究[D]. 北京: 北京理工大学, 2016.
    [15]
    侯子伟, 黄孝龙, 李宁, 等. 水下高速燃气射流及复杂波系二维数值仿真[J]. 水下无人系统学报, 2020, 28(1): 67-74.

    Hou Zi-wei, Huang Xiao-long, Li Ning, et al. Two-Dimensional Numerical Simulation of Underwater High-Speed Gas Jet and Complex Wave System[J]. Journal of Unmanned Undersea System, 2020, 28(1): 67-74.
    [16]
    唐嘉宁, 李世鹏, 王宁飞. 水下固体火箭发动机的负推力现象研究[J]. 固体火箭技术, 2012, 35(3): 325-344. doi: 10.3969/j.issn.1006-2793.2012.03.008

    Tang Jia-ning, Li Shi-peng, Wang Ning-fei, et al. Study on the Negative Thrust of the Underwater Solid Rocket Engines[J]. Journal of Solid Rocket Technology, 2012, 35(3): 325-344. doi: 10.3969/j.issn.1006-2793.2012.03.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article Views(310) PDF Downloads(30) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return