
| Citation: | GUO Li-qiang, MA Liang, ZHANG Hui, YANG Jing. Data-driven Autonomous Decision-making Method for the Effective Position of AUV Torpedo Attacks[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 528-534. doi: 10.11993/j.issn.2096-3920.202108009 |
| [1] |
陈强. 水下无人航行器[M]. 北京: 国防工业出版社, 2014.
|
| [2] |
钟宏伟. 国外无人水下航行器装备与技术现状及展望[J]. 水下无人系统学报, 2017, 25(3): 215-225.
Zhong Hong-wei. Review and Prospect of Equipment and Techniques for Unmanned Undersea Vehicle in Foreign Countries[J]. Journal of Unmanned Undersea Systems, 2017, 25(3): 215-225.
|
| [3] |
孟庆玉, 张静远, 王鹏, 等. 鱼雷作战效能分析[M]. 北京: 国防工业出版社, 2003.
|
| [4] |
陈强. 水下无人系统及其装备发展论证[M]. 北京: 国防工业出版社, 2018.
|
| [5] |
严代彪, 王树宗. 潜艇发射鱼雷的可攻性问题解析法[J]. 火力与指挥控制, 2004, 29(z1): 15-16. doi: 10.3969/j.issn.1002-0640.2004.z1.006
Yan Dai-biao, Wang Shu-zong. Analytic Arithmetic of the Assaultable Problem of Submarine Shooting Torpedo[J]. Fire Control & Command Control, 2004, 29(z1): 15-16. doi: 10.3969/j.issn.1002-0640.2004.z1.006
|
| [6] |
李冬梅, 王树宗. 潜艇发射鱼雷的可攻性问题研究[J]. 舰船科学技术, 2004, 26(4): 54-56.
Li Dong-mei, Wang Shu-zong. A Study on the Assaultable Problem of Submarine Torpedoing[J]. Ship Science and Technology, 2004, 26(4): 54-56.
|
| [7] |
吴晓海, 周智超, 杜海. 潜艇鱼雷攻击可攻区域[J]. 火力与指挥控制, 2009, 34(4): 131-133. doi: 10.3969/j.issn.1002-0640.2009.04.037
Wu Xiao-hai, Zhou Zhi-chao, Du Hai. Research of the Available Attack Area of Torpedo Launched by Submarine[J]. Fire Control & Command Control, 2009, 34(4): 131-133. doi: 10.3969/j.issn.1002-0640.2009.04.037
|
| [8] |
刘勇, 李本昌, 张靖康. 基于鱼雷航程实时预报的潜射线导鱼雷可攻性判断[J]. 指挥控制与仿真, 2009, 31(3): 49-52, 71. doi: 10.3969/j.issn.1673-3819.2009.03.014
Liu yong, Li Ben-chang, Zhang Jing-kang. Attacked Decision-making of Submarine Wire-guided Torpedo Based on Real-time Forecast of Torpedo Range[J]. Command Control& Simulation, 2009, 31(3): 49-52, 71. doi: 10.3969/j.issn.1673-3819.2009.03.014
|
| [9] |
孙华春, 张会, 李长文. 声自导鱼雷射击的有利提前角优化模型[J]. 舰船电子工程, 2011, 31(8): 40-42,51. doi: 10.3969/j.issn.1627-9730.2011.08.011
Sun Hua-chun, Zhang Hui, Li Chang-wen. Optimization of Lead Angle for Acoustic Homing Torpedo[J]. Ship Electronic Engineering, 2011, 31(8): 40-42,51. doi: 10.3969/j.issn.1627-9730.2011.08.011
|
| [10] |
贾跃, 宋保维, 赵向涛, 等. 水面舰船对声自导鱼雷防御机动方法研究[J]. 火力与指挥控制, 2009, 34(1): 45-48. doi: 10.3969/j.issn.1002-0640.2009.01.013
Jia Yue, Song Bao-wei, Zhao Xiang-tao, et al. A Study on Vessel Evading Method to Acoustic Homing Torpedo[J]. Fire Control and Command Control, 2009, 34(1): 45-48. doi: 10.3969/j.issn.1002-0640.2009.01.013
|
| [11] |
崔滋刚, 张仪, 李志伟. 潜射鱼雷攻击水面舰船时的声自导发现概率仿真研究[J]. 计算机测量与控制, 2017, 25(6): 92-94, 119.
Cui Zi-gang, Zhang Yi, Li Wei. Simulation Study of Surface Warship Evading Acoustic Homing Torpedo Based on Monte Carlo[J]. Computer Measurement & Control, 2017, 25(6): 92-94, 119.
|
| [12] |
卢孟维, 马峰, 魏继锋, 等. 舰船规避对追踪段鱼雷弹道散布规律的影响[J]. 鱼雷技术, 2015, 23(5): 379-383.
Lu Meng-wei, Ma Feng, Wei Ji-feng, et al. Influence of Vessel Evasion on the Dispersion Law of Torpedo Trajectory in Tracking Section[J]. Torpedo Technology, 2015, 23(5): 379-383.
|
| [13] |
周志华. 机器学习[M]. 北京: 清华大学出版社.
|
| [14] |
Chen T, Guestrin C. Xgboost: A Scalable Tree Boosting System[C]//Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. California, USA: ACM, 2016: 785-794.
|
| [15] |
冷菲, 李巍. 基于XGBoost对肺鳞癌和肺腺癌的分类预测[J]. 首都医科大学学报, 2019, 40(6): 799-893.
Leng Fei, Li Wei. Classification Prediction of Lung Squamous Cell Carcinoma and Lung Adenocarcinoma Based on XGBoost[J]. Journal of Capital Medical University, 2019, 40(6): 799-893.
|
| [16] |
岳鹏, 侯凌燕, 杨大利, 等. 基于XGBoost特征选择的疾病诊断XLC-Stacking方法[J]. 计算机工程与应用, 2020, 56(17): 136-141.
Yue Peng, Hou Ling-yan, Yang Da-li, et al. XLC-Stacking Method for Disease Diagnosis Based on XGBoost Feature Selection[J]. Computer Engineering and Applications, 2020, 56(17): 136-141.
|
| [17] |
姜少飞, 邬天骥, 彭翔, 等. 基于XGBoost特征提取的数据驱动故障诊断方法[J]. 中国机械工程, 2020, 31(10): 1232-1239. doi: 10.3969/j.issn.1004-132X.2020.10.015
Jiang Shao-fei, Wu Tian-ji, Peng Xiang, et al. Data Driven Fault Diagnosis Method Based on XGBoost Feature Extraction[J]. China Mechanical Engineering, 2020, 31(10): 1232-1239. doi: 10.3969/j.issn.1004-132X.2020.10.015
|
| [18] |
王雅琳, 郭佳, 刘都群. 2018年水下无人系统发展综述[J]. 无人系统技术, 2019, 2(4): 20-25.
Wang Ya-lin, Guo Jia, Liu Du-qun. Summary of the Development of Unmanned Undersea Systems in 2018[J]. Unmanned Systems Technology, 2019, 2(4): 20-25.
|
| [19] |
陈颜辉. 水面舰艇防御鱼雷原理与应用[M]. 北京: 国防工业出版社, 2015.
|
| [20] |
吴鹏, 张会, 张文玉. 潜艇安全走出水面搜索带条件分析和方案优化方法[J]. 舰船科学技术, 2012, 34(6): 95-97. doi: 10.3404/j.issn.1672-7649.2012.06.023
Wu Peng, Zhang Hui, Zhang Wen-yu. The Condition for Submarine Exit Ship’s Search Zone Safely and the Methods for Exit Scheme Optimization[J]. Ship Science and Technology, 2012, 34(6): 95-97. doi: 10.3404/j.issn.1672-7649.2012.06.023
|
| [21] |
李浩, 朱焱. 基于梯度分布调节策略的Xgboost算法优化[J]. 计算机应用, 2020, 40(6): 1633-1637.
Li Hao, Zhu Yan. Xgboost Algorithm Optimization Based on Gradient Distribution Harmonized Strategy[J]. Journal of Computer Applications, 2020, 40(6): 1633-1637.
|
| [22] |
Akiba T, Sano S, Yanase T, et al. Optuna: A Next-Generation Hyperparameter Optimization FrameWork[C]//The 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Anchorage AK USA: Association for Computing Machinery, 2019: 2623-2631.
|