• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 30 Issue 4
Sep  2022
Turn off MathJax
Article Contents
LIU Fu-qiang, SUN Yuan, WANG Guang-ping, WANG Xue-feng. Numerical Simulation on Flow Field Characteristics of Vehicle Planing[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 485-493. doi: 10.11993/j.issn.2096-3920.202107003
Citation: LIU Fu-qiang, SUN Yuan, WANG Guang-ping, WANG Xue-feng. Numerical Simulation on Flow Field Characteristics of Vehicle Planing[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 485-493. doi: 10.11993/j.issn.2096-3920.202107003

Numerical Simulation on Flow Field Characteristics of Vehicle Planing

doi: 10.11993/j.issn.2096-3920.202107003
  • Received Date: 2021-07-07
  • Rev Recd Date: 2021-10-11
  • Available Online: 2022-09-06
  • This study employed the shear stress transport(SST) k-ω turbulence model and used the volume of fluid(VOF) wave and the multiple reference frame(MRF) model motion reference system to construct a numerical simulation model of vehicle planing implemented in STAR-CCM+ numerical simulation software, whereby its feasibility was verified. This model was then used to numerically simulate the planing conditions of a vehicle at different speeds and to study its flow field and hydrodynamic characteristics. The simulation results show that when the planing speed of the vehicle was higher than 30 m/s, cavitation occurs at the tail end of the vehicle. This results in the pressure inside the cavity being lower than the pressure on the wetted surface of the tail, causing the cavity to deform and the liquid level to curl up towards the tail, resulting in splashes. Subsequently, a closed cavity is formed at the tail, and there is an inner flow around the cavity, within which there is a low-pressure area. At this time, the lift on the vehicle is negative. When the speed increases, the cavity collapses and joins the atmosphere, and the lift is significantly increased. When the vehicle planes at different speeds, the flow field is obviously different, so are the lift coefficient and the drag coefficient; the lift even turns negative. This is mainly due to the difference in the wetting distribution and surface pressure distribution of the vehicle, caused by different cavitation effects at the tail of the vehicle at different speeds. The results can provide a theoretical reference for engineering applications of vehicle planing.

     

  • loading
  • [1]
    茹呈瑶. 现代鱼雷、水雷技术发展研究[J]. 舰船科学技术, 2003, 25(4): 42-43.

    Ru Cheng-yao. Modern Torpedo and Mine Technology Research[J]. Ship Science and Technology, 2003, 25(4): 42-43.
    [2]
    张宝华, 杜选民. 水面舰艇鱼雷防御系统综述[J]. 船舶工程, 2003, 25(4): 17-19. doi: 10.3969/j.issn.1000-6982.2003.04.004

    Zhang Bao-hua, Du Xuan-min. A Review of Surface Warship Torpedo Defence System[J]. Ship Engineering, 2003, 25(4): 17-19. doi: 10.3969/j.issn.1000-6982.2003.04.004
    [3]
    徐国亮, 张逊, 王勇. 高速机动反舰导弹防御技术[J]. 指挥控制与仿真, 2011, 33(1): 7-11. doi: 10.3969/j.issn.1673-3819.2011.01.001

    Xu Guo-liang, Zhang Xun, Wang Yong. Analysis of the High Speed and High Maneuvering Antiship Missiles Defense System[J]. Command Control and Simulation, 2011, 33(1): 7-11. doi: 10.3969/j.issn.1673-3819.2011.01.001
    [4]
    樊会涛, 崔颢, 天光. 空空导弹70年发展综述[J]. 航空兵器, 2016(1): 3-12. doi: 10.19297/j.cnki.41-1228/tj.2016.01.001

    Fan Hui-tao, Cui Hao, Tian Guang. A Review on the 70-year Development of Air-to-air Missiles[J]. Aero Weaponry, 2016(1): 3-12. doi: 10.19297/j.cnki.41-1228/tj.2016.01.001
    [5]
    张考. “飞鱼”一类导弹隐身突防性能的分析[J]. 航空学报, 1988, 9(6): 217-225. doi: 10.3321/j.issn:1000-6893.1988.06.002

    Zhang Kao. Stealthy Penetrating Performance Analysis of the “Exocetlike” Missiles[J]. Acta Aeronautica et Astronautica Sinica, 1988, 9(6): 217-225. doi: 10.3321/j.issn:1000-6893.1988.06.002
    [6]
    关皓, 梅华, 闻斌, 等. 复杂海况下飞行器掠海飞行击水概率的模拟研究[J]. 海洋预报, 2015, 32(4): 95-103. doi: 10.11737/j.issn.1003-0239.2015.04.012

    Guan Hao, Mei Hua, Wen Bin, et al. A Simulation Study of Ditching Probability for Sea-skimming Flight on Complicated Sea Surface Statue[J]. Marine Forecasts, 2015, 32(4): 95-103. doi: 10.11737/j.issn.1003-0239.2015.04.012
    [7]
    Moctar O E, Shiqunov V, Zorn T. Duisburg Test Case: Post-panamax Container Ship for Benchmarking[J]. Ship Technology Research, 2012, 59(3): 50-64. doi: 10.1179/str.2012.59.3.004
    [8]
    De M A, Mancini S, Miranda S, et al. Experimental and Numerical Hydrodynamic Analysis of a Stepped Planing Hull[J]. Applied Ocean Research, 2017, 64: 135-154. doi: 10.1016/j.apor.2017.02.004
    [9]
    Timothy Y, Michael M, Len I, et al. Investigation of Cylinder Planing on a Flat Free Surface[C]//11th International Conference on Fast Sea Transportation Fast. Honolulu, Hawaii, USA: FAST, 2011.
    [10]
    张珂, 孙士明, 颜开, 等. 超空泡航行器尾部滑行流场特性数值仿真与试验[J]. 水下无人系统学报, 2020, 28(2): 126-130.

    Zhang Ke, Sun Shi-ming, Yan Kai, et al. Numerical Simulation and Experiment on Fluid Field Characteristic of Planing for Supercavity Vehicle Tail[J]. Journal of Unmanned Undersea Systems, 2020, 28(2): 126-130.
    [11]
    张新彬. 基于表面张力的仿水黾机器人研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
    [12]
    刘富强, 罗凯, 梁红阁, 等. 回转体滑水航行流体动力特性研究[J]. 西北工业大学学报, 2021, 39(1): 101-110. doi: 10.3969/j.issn.1000-2758.2021.01.013

    Liu Fu-qiang, Luo Kai, Liang Hong-ge, et al. Research on Hydrodynamic Characteristics of Cylinder Planning[J]. Journal of Northwestern Polytechnical University, 2021, 39(1): 101-110. doi: 10.3969/j.issn.1000-2758.2021.01.013
    [13]
    Roohi E, Pendar M, Rahimi A. Simulation of Three-dimensional Cavitation Behind a Disk using Various Turbulence and Mass Transfer Models[J]. Applied Mathematical Modelling, 2016, 40(1): 542-564. doi: 10.1016/j.apm.2015.06.002
    [14]
    黄闯. 跨声速超空泡射弹的弹道特性研究[D]. 西安: 西北工业大学, 2017.
    [15]
    Menter F R. Two-equation Eddy-viscosity Turbulence Models for Engineering Applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149
    [16]
    Schnerr G H, Sauer J. Physical and Numerical Modeling of Unsteady Cavitation Dynamics[C]//4th International Conference on Multiphase Flow. New Orleans, USA: ICMF, 2001.
    [17]
    Zhou J J, Yu K P, Zhang G. Numerical Simulation on the Process of Supercavity Development and the Planing State of Supercavitating Vehicle[J]. Journal of Ship Mechanics, 2011, 15(3): 199-206.
    [18]
    Issa R, Luo J Y, Gosman D. Prediction of Impeller Induced Flows in Mixing Vessels Using Multiple Frames of Reference[C]//4th European Conference on Mixing. Cambridge, UK: IMECHE, 1994.
    [19]
    魏海鹏, 符松. 不同多相流模型在航行体出水流场数值模拟中的应用[J]. 振动与冲击, 2015, 34(4): 48-52. doi: 10.13465/j.cnki.jvs.2015.04.009

    Wei Hai-peng, Fu Song. Multiphase Models for Flow Field Numerical Simulation of a Vehicle Rising from Water[J]. Journal of Vibration and Shock, 2015, 34(4): 48-52. doi: 10.13465/j.cnki.jvs.2015.04.009
    [20]
    严卫生. 鱼雷航行力学[M]. 西安: 西北工业大学出版社, 2005: 239-240.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article Views(408) PDF Downloads(32) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return