• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
LI Fang-li, LIU Jie, WANG Yan-bo, WEI Hai-feng, LI Yuan-jiang. Fault Diagnosis Method of PMSM Inter Turn Short Circuit Based on Deep Reinforcement Learning[J]. Journal of Unmanned Undersea Systems, 2021, 29(6): 733-738. doi: 10.11993/j.issn.2096-3920.2021.06.013
Citation: LI Fang-li, LIU Jie, WANG Yan-bo, WEI Hai-feng, LI Yuan-jiang. Fault Diagnosis Method of PMSM Inter Turn Short Circuit Based on Deep Reinforcement Learning[J]. Journal of Unmanned Undersea Systems, 2021, 29(6): 733-738. doi: 10.11993/j.issn.2096-3920.2021.06.013

Fault Diagnosis Method of PMSM Inter Turn Short Circuit Based on Deep Reinforcement Learning

doi: 10.11993/j.issn.2096-3920.2021.06.013
  • Received Date: 2021-01-18
  • Rev Recd Date: 2021-02-06
  • Publish Date: 2021-12-31
  • Permanent magnet synchronous motors(PMSMs) have been widely used in the field of underwater navigation and propulsion due to their advantages of strong stability, low loss, high efficiency, small size, and wide speed range. In this study, the deep Q network(DQN) algorithm in the deep reinforcement learning method is used to diagnose the inter turn short circuit fault of the PMSM. First, Maxwell software is used to establish the PMSM model and analyze the relevant changes in the three-phase domain current, minimum magnetic density, and electromagnetic torque under different states, and the five dimensional characteristic components are collected to construct the characteristic data set and form the motor fault samples. Then, the DQN algorithm is used to train and analyze the data of the sample and test sets. By adjusting the number of neuron nodes, iteration, learning rate, and number of experience playbacks, the accuracy rate obtained of the algorithm for PMSM fault diagnosis is as high as 99.61%, which verifies the effectiveness of the algorithm in the diagnosis of PMSM faults.

     

  • loading
  • [1]
    赵涛, 刘明雍, 周良荣. 自主水下航行器的研究现状与挑战[J]. 火力与指挥控制, 2010, 35(6): 1-6.

    Zhao Tao, Liu Ming-yong, Zhou Liang-rong. A Survey of Autonomous Underwater Vehicle Recent Advances and Future Challenges[J]. Fire Control & Command Control, 2010, 35(6): 1-6.
    [2]
    徐海珠, 谢顺依, 连军强, 等. 对转鱼雷永磁同步推进电机直接转矩控制系统设计[J]. 鱼雷技术, 2012, 20(1): 51-55.

    Xu Hai-zhu, Xie Shun-yi, Lian Jun-qiang, et al. A Direct Torque Control System of Counter-rotating PMSM for Torpedo Prolulsion[J]. Torpedo Technology, 2012, 20(1): 51-55.
    [3]
    钱鑫, 王崇武, 于琨琨, 等. 基于递推最小二乘法的永磁同步电机参数辨识[J]. 鱼雷技术, 2014, 22(6): 452- 456.

    Qian Xin, Wang Chong-wu, Yu kun-kun, et al. Parameters Identification of Permanent Magnet Synchronous Motor Based on Recursive Least Squares[J]. Torpedo Technology, 2014, 22(6): 452-456.
    [4]
    陈进. 机械设备振动监测与故障诊断[M]. 上海: 上海交通大学出版社, 1999.
    [5]
    徐海珠, 谢顺依, 崔维开, 等. 基于脉振高频电压注入的对转永磁同步电机无位置传感器控制[J]. 鱼雷技术, 2012, 20(4): 290-294.

    Xu Hai-zhu, Xie Shun-yi, Cui Wei-kai, et al. Non-position-sensor Control for Counter-rotating PMSM Based on High Frequency Voltage Pulse Injection[J]. Torpedo Tech- nology, 2012, 20(4): 290-294.
    [6]
    Wang Z, Yang J, Ye H, et al. A Review of Permanent Magnet Synchronous Motor fault Diagnosis[C]//IEEE Conference and Expo Transportation Electrification Asia-Pacific(ITEC Asia-Pacific). Beijing: IEEE, 2014.
    [7]
    Elbouchikhi E, Choqueuse V, Auger F, et al. Motor Current Signal Analysis Based on a Matched Subspace Detector[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(12): 3260-3270.
    [8]
    Immovilli F, Bianchini C, Cocconcelli M, et al. Bearing Fault Model for Induction Motor with Externally Induced Vibration[J]. IEEE Transactions on Industrial Electronics, 2013, 60(8): 3408-3418.
    [9]
    李垣江, 张周磊, 李梦含, 等. 采用深度学习的永磁同步电机匝间短路故障诊断方法[J]. 电机与控制学报, 2020, 24(9): 173-180.

    Li Yuan-jiang, Zhang Zhou-lei, Li Meng-han, et al. Fault Diagnosis of Inter-turn Short Circuit of Permanent Magnet Synchronous Motor Based on Deep Learning[J]. Electric Machines and Control, 2020, 24(9): 173-180.
    [10]
    罗烨锋. 双绕组永磁同步电机伺服控制技术研究[D]. 杭州: 浙江大学, 2019.
    [11]
    Kim K, Lim S, Koo D, et al. The Shape Design of Permanent Magnet for Permanent Magnet Synchronous Motor Considering Partial Demagnetization[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3485-3487.
    [12]
    梁星星, 冯旸赫, 马扬, 等. 多Agent深度强化学习综述[J]. 自动化学报, 2020, 46(12): 2537-2557.

    Liang Xing-xing, Feng Yang-he, Ma Yang, et al. Deep Multi-Agent Reinforcement Learning: a Survey[J]. Acta Automatica Sinca, 2020, 46(12): 2537-2557.
    [13]
    Ding Y, Ma L, Ma J, et al. Intelligent Fault Diagnosis for Ro-tating Machinery Using Deep Q-network Based Health State Classification: A Deep Reinforcement Learning Approach[J]. Advanced Engineering Informatics, 2019, 42: 100977.
    [14]
    Wang Q, Zhao X, Huang J, et al. Addressing Complexities of Machine Learning in Big Data: Principles, Trends and Challenges from Systematical Perspectives[EB/OL]. [2017-10-17]. https://www.preprints.org/manuscript/2017 10.0076/v1.
    [15]
    Mnih V, Kavukcuoglu K, Silver D, et al. Human-level Control through Deep Reinforcement Learning[J]. Nature, 2015, 518: 529-533.
    [16]
    赵冬斌, 邵坤, 朱圆恒, 等. 深度强化学习综述: 兼论计算机围棋的发展[J]. 控制理论与应用, 2016, 33(6): 701-717.

    Zhao Dong-bin, Shao Kun, Zhu Yuan-heng, et al. Review of Deep Reinforcement Learning and Discussions on the Development of Computer Go[J]. Control Theory & Applications, 2016, 33(6): 701-717.
    [17]
    Silver D, Schrittwieser J, Simonyan K, et al. Mastering the Game of Go Without Human Knowledge[J]. Nature, 2017, 550: 354-359.
    [18]
    Graves A, Wayne G, Reynolds M, et al. Hybrid Computing Using A Neural Network with Dynamic External Memory[J]. Nature, 2016, 538: 471-476.

    [19] Wang Z, Schaul T, Hessel M, et al. Dueling Network Architectures for Deep Reinforcement Learning[C]// Pro-ceedings of The 33rd International Conference on Machine Learning. New York, JMLR: W&CP, 2016.

    [19]
    [20] Sutton R, Barto A. Introduction to Reinforcement Learn-ing[J]. Machine Learning, 2005, 16(1): 285-286.
    [20]
    [21] Peuget R, Courtine S, Rognon J. Fault Detection and Iso-lation on A PWM Inverter by Knowledge-based Model[J]. IEEE Transactions on Industry Applications, 1998, 34(6): 1318-1326.
    [21]
    曹卫东, 施卫东. 退磁曲线法和磁导法的磁力泵耦合器转矩分析[J]. 农业机械学报, 2004, 32(2): 145-149.

    Cao Wei-dong, Shi Wei-dong. Analysis on Torque of Magnetic-force Pump Coupler Based on Demagnetization Curve and Magnet Conductivity Methodology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2004, 32(2): 145-149.
    [22]
    伍召莉. 永磁同步电机失磁分析及在线监测[D]. 北京: 北京交通大学, 2012.
    [23]
    [24] Guo H, Xu J. Fault Tolerant Control with Torque Limitation Based on Fault Mode for Tenphase Permanent Magnet Synchronous Motor[J]. Chinese Journal of Aeronautics, 2015, 28(5): 1464-1475.
    [24]
    史丽萍, 汤家升, 王攀攀, 等. 采用最优小波树和改进BP神经网络的感应电动机定子故障诊断[J]. 电工技术学报, 2015, 30(24): 38-45.

    Shi Li-ping, Tang Jia-sheng, Wang Pan-pan, et al. Stator Fault Diagnosis of Induction Motors Using the Optimal Wavelet Tree and Improved BP Neural Network[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 38-45.
    [25]
    [26] Gritli Y, Rossi C, Casadei D, et al. Demagnetizations Di-agnosis for Permanent Magnet Synchronous Motors Based on Advanced Wavelet Analysis[C]//2012 International Conference on Electrical Machines. Marseille: IEEE, 2012: 2397-2403.
    [26]
    孙文珺, 邵思羽, 严如强. 基于稀疏自动编码深度神经网络的感应电动机故障诊断[J]. 机械工程学报, 2016, 52(9): 65-71.

    Sun Wen-jun, Shao Si-yu, Yan Ru-qiang. Induction Motor Fault Diagnosis Based on Deep Neural Network of Sparse Auto-encoder[J]. Journal of Mechanical Engineering, 2016, 52(9): 65-71.
    [27]
    [28] Wang L, Xie Y, Zhang Y, et al. A Fault Diagnosis Method for Asynchronous Motor using Deep Learning[J].Journal of Xi’an Jiaotong University, 2017, 51(10): 128-134.

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(405) PDF Downloads(92) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return