
| Citation: | WANG Zhi-long, HAN Xin-bo, QIAO Hong, YIN Shao-ping, HAN Ai, LEI Ming. Analysis of Structural Integrity for the Hydro-reactive Metal Fuel Motor Grainl[J]. Journal of Unmanned Undersea Systems, 2021, 29(6): 695-701. doi: 10.11993/j.issn.2096-3920.2021.06.008 |
| [1] |
查志武, 史小锋, 钱志博. 鱼雷热动力技术[M]. 北京: 国防工业出版社, 2006.
|
| [2] |
张亚俊, 王祎, 李吉祯, 等. 高速鱼雷水冲压发动机用金属/水反应燃料研究进展[J]. 四川兵工学报, 2013, 34 (5): 123-126.
Zhang Ya-jun, Wang Yi, Li Ji-zhen, et al. Review on the Hydroreactive Metal Fuel Used in Water Ramjet Engine of High Speed Torpedo[J]. Journal of Sichuan Ordnance, 2013, 34(5): 123-126.
|
| [3] |
晁侃, 牛楠, 陆贺建. 一次水燃比对高金属含量镁基推进剂水冲压发动机比冲性能影响分析[J]. 水下无人系统学报, 2017, 25(1): 52-56.
Chao Kan, Niu Nan, Lu He-jian. Effect of Primary Water-to-fuel Ratio on Specific Impulse Performance of Water Ramjet with High Metal Content Propellant[J]. Journal of Unmanned Undersea Systems, 2017, 25(1): 52-56.
|
| [4] |
黄海涛. 高能镁基水反应金属燃料推进剂研究[D]. 北京: 北京理工大学, 2015.
|
| [5] |
Ozerov E S, Yurinov A A. Combustion of Particlesof Aluminum-magnesium Alloys in Water Vapor[J]. Combustion Explosion and Shock Waves, 1977, 13(6): 778- 780.
|
| [6] |
赵卫兵, 史小锋, 伊寅, 等. 水反应金属燃料在超高速鱼雷推进系统中的应用[J]. 火炸药学报, 2006(5): 53-56.
Zhao Wei-bing, Shi Xiao-feng, Yi Yin, et al. Application of Hydroreactive Metal Fuel in Super-Cavitation Torpedo Propulsion System[J]. Chinese Journal of Explosives & Propellants, 2006(5): 53-56.
|
| [7] |
鲍福廷, 侯晓. 固体火箭发动机设计[M]. 第1版. 北京: 中国宇航出版社, 2016.
|
| [8] |
宋仕雄. 低温点火状态下固体发动机药柱结构完整性分析[D]. 西安: 航天动力技术研究院, 2018.
|
| [9] |
王哲君, 强洪夫, 王广, 等. 固体推进剂力学性能和本构模型的研究进展[J]. 含能材料, 2016, 24(4): 403-416.
Wang Zhe-jun, Qiang Hong-fu, Wang Guang, et al. Review on the Mechanical Properties and Constitutive Models of Solid Propellants[J]. Chinese Journal of Energetic Materials, 2016, 24(4): 403-416.
|
| [10] |
申志彬, 姜人伟, 职世君. 伞盘结构对大长径比发动机药柱结构完整性的影响[J]. 国防科技大学学报, 2017, 39(1): 148-152.
Shen Zhi-bin, Jiang Ren-wei, Zhi Shi-jun. Effects of Umbrella Slot on the Structure Integrity of Solid Rocket Motor Grain with Large Aspect Ratio[J]. Journal of National University of Defense Technology, 2017, 39(1): 148-152.
|
| [11] |
李磊, 唐国金, 雷勇军, 等. 固体火箭发动机药柱伞盘结构应力应变分析[J]. 推进技术, 2008(4): 477-480, 507.
Li Lei, Tang Guo-jin, Lei Yong-jun, et al. Stress and Strain Analysis for the Umbrella Slot Configuration of Solid Rocketmotor Grain[J]. Tactical Missile Technology, 2008(4): 477-480, 507.
|
| [12] |
檀叶, 陈科. 套管装药发动机药柱结构完整性分析[J].战术导弹技术, 2018(5): 90-94.
Tan Ye, Chen Ke. Analysis of Structural Integrity for the Canular Solid Rocket Motor Grainl[J]. Tactical Missile Technology, 2018(5): 90-94.
|
| [13] |
温瑞珩, 李健. 固体火箭发动机结构破坏分析[J]. 战术导弹技术, 2019(3): 88-93.
Wen Rui-heng, Li Jian. Structural Failure Analysis of Solid Rocket Engine[J]. Tactical Missile Technology, 2019(3): 88-93.
|
| [14] |
Chyuan S W. Dynamic Analysis of Solid Propellant Grains Subjected to Ignition Pressurization Loading[J]. Journal of Sound & Vibration, 2003, 268(3): 465-483.
|
| [15] |
Chyuan S W. Studies of Poisson’s Ratio Variation for Solid Propellant Grains under Ignition Pressure Loading[J]. International Journal of Pressure Vessels & Piping, 2003, 80(12): 871-877.
|
| [16] |
朱浩, 朱亮, 吕先锋, 等. 铝合金薄壁挤压管在准静态和动态载荷下的有限元模拟[J]. 兰州理工大学学报, 2007(2): 34-38.
Zhu Hao, Zhu Liang, Lü Xian-feng, et al. FEM Simulation of Thin-wall Aluminum Extruded Tubes under Quasistatic and Dynamic Loads[J]. Journal of Lanzhou University of Technology, 2007(2): 34-38.
|
| [17] |
张学广, 刘纯国, 郑愿, 等. 基于延性损伤和剪切损伤的铝合金成形极限预测[J]. 吉林大学学报(工学版), 2016, 46(5): 1558-1566.
Zhang Xue-guang, Liu Chun-guo, Zheng Yuan, et al. Forming Limit Prediction of Aluminum Alloy Based on Ductile Damage and Shear Damage[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(5): 1558-1566.
|