• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
WANG Guo-hui, YANG Ya-nan, WANG Yan-hui, WANG Shu-xin. Modeling and Efficiency Analysis of the Hydro-electric Conversion Process of Underwater Glider Powered by Ocean Thermal Energy[J]. Journal of Unmanned Undersea Systems, 2021, 29(4): 451-458. doi: 10.11993/j.issn.2096-3920.2021.04.012
Citation: WANG Guo-hui, YANG Ya-nan, WANG Yan-hui, WANG Shu-xin. Modeling and Efficiency Analysis of the Hydro-electric Conversion Process of Underwater Glider Powered by Ocean Thermal Energy[J]. Journal of Unmanned Undersea Systems, 2021, 29(4): 451-458. doi: 10.11993/j.issn.2096-3920.2021.04.012

Modeling and Efficiency Analysis of the Hydro-electric Conversion Process of Underwater Glider Powered by Ocean Thermal Energy

doi: 10.11993/j.issn.2096-3920.2021.04.012
  • Received Date: 2020-07-28
  • Rev Recd Date: 2020-11-11
  • Publish Date: 2021-08-31
  • Ocean thermal energy power supply is an effective technique to increase the duration and range of underwater gliders. The optimization of the energy transfer path and improvement of the energy conversion efficiency are crucial for improving the operation of underwater gliders. Based on the energy conversion mechanism and loss mechanism of the mechanical energy-electric energy conversion process in the ocean thermal energy power supply system of underwater gliders, this study establishes the parametric energy balance equation, mechanical energy-electric energy conversion model, and conversion efficiency calculation equation of the hydraulic motor and generator and other key devices as well as performs an efficiency analysis of the energy conversion process. The relative error in the conversion efficiency of pressure-kinetic energy and kinetic-electric energy conversions, when comparing the results of the platform test and the model simulation, are 6.37% and 5.12%, respectively. The accuracy of the model is therefore verified, as these relative errors are small. As a result, the optimal design and prototyping of the ocean thermal energy power supply are performed. In the sea trial, the test prototype can harvest 6 701 J of electrical energy, and the energy conversion efficiency of the pressure-electric energy conversion process can reach 38.86%, validating the accuracy and effectiveness of the proposed model.

     

  • loading
  • [1]
    唐国建, 崔凤. 海洋开发对中国未来发展的战略意义初探[J]. 上海行政学院学报, 2013, 14(5): 56-61.

    Tang Guo-jian, Cui Feng. The Strategic Significance of Marine Development for Chinese Future Development[J]. The Journal of Shanghai Administration Institute, 2013, 14(5): 56-61.
    [2]
    李乃胜. 聚焦海洋装备国产化, 为建设海洋强国提供强有力的工具性支撑[N]. 中国科学报, 2017-8-9.
    [3]
    俞建成, 孙朝阳, 张艾群. 海洋机器人环境能源收集利用技术现状[J]. 机器人, 2018, 40(1): 89-101.

    Yu Jian-cheng, Sun Chao-yang, Zhang Ai-qun. The Pre-sent Status of Environmental Energy Harvesting and Uti-lization Technology of Marine Robots[J]. Robot, 2017, 40(1): 89-101.
    [4]
    沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.

    Shen Xin-lei, Wang Yan-hui, Yang Shao-qiong, et al. De-velopment of Underwater Gliders: An Overview and Prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 89-106.
    [5]
    Webb D, Simonetti P, Jones C. SLOCUM: An Underwater Glider Propelled by Environmental Energy[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 447-452.
    [6]
    Yang Y, Wang Y, Ma Z, et al. A Thermal Engine for Un-derwater Glider Driven by Ocean Thermal Energy[J]. Applied Thermal Engineering, 2016, 99: 455-464.
    [7]
    Ma Z, Wang Y, Wang S, et al. Ocean Thermal Energy Harvesting with Phase Change Material for Underwater Glider[J]. Applied Energy, 2016, 178(15): 557-566.
    [8]
    Wang M, Jing R, Zhang H, et al. An Innovative Organic Rankine Cycle(ORC) Based Ocean Thermal Energy Con-version(OTEC) System with Performance Simulation and Multi-objective Optimization[J]. Applied Thermal Engi-neering, 2018, 145: 743-754.
    [9]
    Kong Q, Ma J, Che C. Numerical Simulation and Exper-imental Study of Volumetric Change Rate During Phase Change Process[J]. International Journal of Energy Re-search, 2009, 33(5): 513-525.
    [10]
    Kong Q, Ma J, Xia D. Numerical Simulation and Optimi-Zation of Underwater Glider Operating Process[J]. Rene- wable Energy, 2010, 35: 771-779.
    [11]
    田振华, 周友援, 柳军飞. 海洋温差能发电自升降平台系统建模与仿真[J]. 四川兵工学报, 2014, 35(1): 31-33, 52.

    Tian Zhen-hua, Zhou You-yuan, Liu Jun-fei. Modeling and Simulating of Thermal Recharging(TREC) and Power Unit[J]. Journal of Sichuan Ordnance, 2014, 35(1): 31-33, 52.
    [12]
    Wang G, Ha D, Wang K. Harvesting Environmental Thermal Energy Using Solid/liquid Phase Change Materials[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(8): 1632-1648.
    [13]
    Wang G, Ha D, Wang K. A Scalable Environmental Ther-mal Energy Harvester Based on Solid/liquid Phase-change Materials[J]. Applied Energy, 2019, 250: 1468-1480.
    [14]
    桑勇, 邵利来, 赵健龙, 等. 基于 AMESim 蓄能器组的动态特性研究[J]. 液压气动与密封, 2018, 38(1): 20-24.

    Sang Yong, Shao Li-lai, Zhao Jian-long, et al. Study on Multiple Accumulator in Hydraulic System Based on AMESim[J]. Hydraulics Pneumatics and Seals, 2018, 38 (1): 20-24.
    [15]
    林添良.工程机械节能技术及应用[M].北京: 机械工业出版社, 2017: 101-105.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(330) PDF Downloads(87) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return