• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
ZHOU Zhuo, LIANG Hong, YANG Chang-sheng, ZHAO Guo-gui. Underwater Target Identification Based on Dolphin Auditory System Model[J]. Journal of Unmanned Undersea Systems, 2021, 29(2): 147-152. doi: 10.11993/j.issn.2096-3920.2021.02.003
Citation: ZHOU Zhuo, LIANG Hong, YANG Chang-sheng, ZHAO Guo-gui. Underwater Target Identification Based on Dolphin Auditory System Model[J]. Journal of Unmanned Undersea Systems, 2021, 29(2): 147-152. doi: 10.11993/j.issn.2096-3920.2021.02.003

Underwater Target Identification Based on Dolphin Auditory System Model

doi: 10.11993/j.issn.2096-3920.2021.02.003
  • Received Date: 2020-07-14
  • Rev Recd Date: 2020-07-24
  • Publish Date: 2021-04-30
  • Extracting feature information from the active sonar echo of target is an effective method to realize underwater target classification and identification. The excellent performance of animal sonar in underwater target identification provides a solution for artificial sonar. In this study, the click signal of bottlenose dolphin is used as the transmitting signal of active sonar. The echo characteristics of the target are extracted by wavelet transform and model of dolphin auditory system, and are classified as the input of support vector machine. In addition, this paper proposes an idea that the time spectrum obtained by the model based on dolphin auditory system is used as the input of convolution neural network to classify and identify the target. The results show that compared with that of the wavelet transform method, the feature extraction method based on the computer model of dolphin auditory system is better for target classification and identification. Combining with convolution neural network, using dolphin click signal and model of dolphin auditory system can obtain better results in underwater target identification.

     

  • loading
  • [1]
    Au W W L, Scheifele P M. The Sonar of Dolphins[J]. The Journal of the Acoustical Society of America, 1993, 95(1): 585-586.
    [2]
    Au W W L, Hastings M C. Principles of Marine Bio-acoustics[M]. New York : Springer US, 2008.
    [3]
    Au W W L, Pawloski D A. Cylinder Wall Thickness Difference Discrimination by an Echolocating Atlantic Bottlenose Dolphin[J]. Journal of Comparative Physiology. A: Neuroethology, Sensory, Neural and Behavioral Physiology, 1992, 170(1): 41-47.
    [4]
    Branstetter B K, Mercado E, Au W W L. Representing Multiple Discrimination Cues in a Computational Model of the Bottlenose Dolphin Auditory System[J]. The Journal of the Acoustical Society of America, 2007, 122(4): 2459.
    [5]
    牛富强, 杨燕明, 文洪涛, 等. 瓶鼻海豚的Click声信号特性[J]. 声学技术, 2011, 30(2): 148-152.
    [6]
    牛富强, 薛睿超, 周在明, 等. 印太瓶鼻海豚(Tursiops aduncus)通讯声信号分类及特征参数的环境差异性分析[J]. 声学学报, 2020, 45(2): 189-195.

    Niu Fu-qiang, Xue Rui-chao, Zhou Zai-ming, et al. Anal-ysis of Differences on Whistle Classification and Characteristics of Indo-Pacific Bottlenose Dolphins(Tursiops aduncus) in Different Environment[J]. Acta Acustica, 2020, 45(2): 189-195.
    [7]
    陈晟, 牛富强, 林长伦, 等. 不同环境下瓶鼻海豚click信号及仿真分析[J]. 声学技术, 2019, 38(4): 452-458.
    [8]
    景志宏, 林钧清, 钱建立, 等. 水下目标识别技术的研究[J]. 舰船科学技术, 1999, 21(4): 38-44.
    [9]
    Capus C, Pailhas Y, Brown K, et al. Bio-inspired Wideband Sonar Signals Based on Observations of the Bottlenose Dolphin(Tursiops Truncatus)[J]. The Journal of the Acoustical Society of America, 2007, 121(1): 594-604.
    [10]
    任超. 基于支持向量机的水下目标识别技术[D]. 西安: 西北工业大学, 2016.
    [11]
    Au W W L, Andersen L N, René Rasmussen A, et al. Neural Network Modeling of a Dolphin’s Sonar Discrimination Capabilities[J]. The Journal of the Acoustical Society of America, 1995, 98(1): 43-50.
    [12]
    Lecun Y, Bengio Y, Hinton G. Deep Learning[J]. Nature, 2015, 521(7553): 436.
    [13]
    Lecun Y, Bottou L. Gradient-based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
    [14]
    Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition[EB/OL]. ArXiv, (2014-09-04)[2020-07-14]. https://arxiv.org/abs/1409. 1556.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(675) PDF Downloads(184) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return