• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
TANG Li-yuan, WANG Hai-tao, WANG Bin. Active Acoustic Bait Simulation System Based on COMSOL[J]. Journal of Unmanned Undersea Systems, 2020, 28(5): 555-562. doi: 10.11993/j.issn.2096-3920.2020.05.012
Citation: TANG Li-yuan, WANG Hai-tao, WANG Bin. Active Acoustic Bait Simulation System Based on COMSOL[J]. Journal of Unmanned Undersea Systems, 2020, 28(5): 555-562. doi: 10.11993/j.issn.2096-3920.2020.05.012

Active Acoustic Bait Simulation System Based on COMSOL

doi: 10.11993/j.issn.2096-3920.2020.05.012
  • Received Date: 2019-11-12
  • Rev Recd Date: 2020-03-02
  • Publish Date: 2020-10-31
  • The “receiving and sending” mode is one of the important symbols of the intelligentization of modern active acoustic bait. To solve the distortion of the transmission function of a receiving/transmitting acoustic field and the leakage of the transmitting string under this mode, an active acoustic bait array element domain signal simulation system is established using COMSOL in this study. The system architecture and modular design ideas are described, and six major functional modules are designed: model building, acoustic finite element, marine environment, receiving, transmitting, and signal processing modules. The simulation algorithm of the target/simulated target’s scattering acoustic field transfer function based on the finite-element and plate-element methods is introduced it provides signal processing functions such as spectrum analysis, time–frequency analysis, and envelope extraction. The transfer function between the input voltage of the acoustic bait receiver and the output voltage of the transmitter is simulated by establishing a mathematical model of the acoustic field cross-leak feedback between the transmitter and receiver in the acoustic vibration coupling state. The system is deployed on a cluster computer through a COMSOL server. Unlike existing studies pertaining to “receiving and sending” technology, the effect of the acoustic and vibration coupling of the equipment is considered, and the complete bait operating process using the array time-domain signal as the result is simulated in this study. A specific code is implemented in the background, the interactive interface is simple and easy to operate, and the modules communicate through shared files, which are universal and extensible. After several runs, the system performance stabilizes and the calculation speed is high. By comparing the simulation results and theoretical solutions of the classic spherical electronic cabin model, the accuracy of the system is verified.

     

  • loading
  • [1]
    李本昌, 刘春跃, 郑援. 现代水声对抗装备发展及其对海战的影响[J]. 鱼雷技术, 2011, 19(6): 468-472.

    Li Ben-chang, Liu Chun-yue, Zheng Yuan. Development of Modern Acoustic Countermeasure Equipments and Its Effect on Sea Warfare[J]. Torpedo Technology, 2011, 19(6): 468-472.
    [2]
    汪伟, 李本昌, 罗笛. 潜艇水声对抗及水声对抗器材的应用[J]. 指挥控制与仿真, 2008, 30(5): 102-105.

    Wang Wei, Li Ben-chang, Luo Di. Acoustic Warfare of Submarine and Application of Acoustic Countermeasure Equipment[J]. Command Control and Simulation, 2008, 30(5): 102-105.
    [3]
    孙仲阜. 水声对抗系统中声诱饵仿真研究[J]. 声学技术, 2003, 22(2): 113-116.

    Sun Zhong-fu. Acoustical Decoy Simulation Using Underwater Acoustical Warfare Simulation System[J]. Technical Acoustics, 2003, 22(2): 113-116.
    [4]
    朱炳贤. 战术声诱饵[J]. 水雷战与舰船防护, 1997(2): 52-54.
    [5]
    王守义. 智能声诱饵第一类边发边收方案及信号处理技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
    [6]
    向大威, 顾亚平, 李秀红. 声泄漏的自适应抵消[J]. 声学技术, 1993, 12(4):1-3.
    [7]
    王自娟, 惠俊英, 余赟, 等. 悬浮式矢量边发、边收声诱饵关键技术[J]. 声学技术, 2010, 29(3):78-82.

    Wang Zi-juan, Hui Jun-ying, Yu Yun, et al. The Study of Suspended Vector Receiving While Emitting Decoy[J]. Technical Acoustics, 2010, 29(3): 78-82.
    [8]
    吴培荣. 基于边收边发技术的声隔离度研究[J]. 声学技术, 2013, 32(4): 281-285.

    Wu Pei-rong. Research on Isolation Degree of ‘Receiving and Sending’ Technique[J]. Technical Acoustics, 2013, 32(4): 281-285.
    [9]
    王敏慧, 胡健辉, 王艳. 声障板对圆柱换能器轴向波束抑制技术研究[J]. 声学技术, 2019, 38(4): 476-479.

    Wang Min-hui, Hu Jian-hui, Wang Yan. Research on Axial Beam Suppression Technique for Baffled Cylindrical Transducer[J]. Technical Acoustics, 2019, 38(4): 476-479.
    [10]
    徐盛瀛, 刘雨东. 声诱饵简化模型隔离度数值仿真计算[J]. 声学与电子工程, 2019(4): 39-41.

    Xu Sheng-ying, Liu Yu-dong. Numerical Simulation Calculation of Simplified Model of Acoustic Decoy[J]. Acoustics and Electronic Engineering, 2019(4): 39-41.
    [11]
    董阳泽. 声诱饵仿真评估系统的研究和实现[D]. 西安: 西北工业大学, 2002.
    [12]
    苑秉成, 陈喜, 周徐昌, 等. 声诱饵仿真试验系统[J]. 应用声学, 2003, 22(4): 31-34, 39.

    Yuan Bing-cheng, Chen xi, Zhou Xu-chang, et al. A simulating Test System for Acoustic Decoy[J]. Applied Acoustics, 2003, 22(4): 31-34, 39.
    [13]
    董阳泽, 罗修波, 刘平香, 等. 基于声诱饵仿真系统的水声对抗仿真系统研究[J]. 舰船电子工程, 2003(1): 7-11.
    [14]
    Ingenito F. Scattering from an Object in a Stratified Medium[J]. Journal of the Acoustical Society of America, 1987, 82(6): 2051-2059.
    [15]
    胡寿松. 自动控制原理[M]. 6版. 北京: 科学出版社, 2013.
    [16]
    刘伯胜, 雷家煜. 水声学原理[J]. 哈尔滨: 哈尔滨船舶工业学院出版社, 1993.
    [17]
    张明辉. 海底声散射强度测量方法及不规则海域混响特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.
    [18]
    卢笛. 基于有限元原理的弹性目标声散射计算[D]. 哈尔滨: 哈尔滨工程大学, 2014.
    [19]
    范军, 汤渭霖, 卓琳凯, 等. 声呐目标回声特性预报的板块元方法[J]. 船舶力学, 2012, 16(1): 171-180.

    Fan Jun, Tang Wei-lin, Zhuo Lin-kai, et al. Planar Elements Method for Forecasting the Echo Characteristics from Sonar Targets[J]. Journal of Ship Mechanics, 2012, 16(1): 171-180.
    [20]
    庄琰. COMSOL发布多物理场建模仿真和APP设计最新研发动态[J]. 科技纵览, 2016(11): 78-79.
    [21]
    何祚镛, 赵玉芳. 声学理论基础[M]. 国防工业出版社, 1981.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(744) PDF Downloads(300) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return