• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
LIU Hong-jin, HU Yu-li, YANG Wei, HAO Ze-hua. Simulation of Phase Transition Process of Underwater Thermal Glider Based on FLUENT[J]. Journal of Unmanned Undersea Systems, 2020, 28(5): 532-537. doi: 10.11993/j.issn.2096-3920.2020.05.009
Citation: LIU Hong-jin, HU Yu-li, YANG Wei, HAO Ze-hua. Simulation of Phase Transition Process of Underwater Thermal Glider Based on FLUENT[J]. Journal of Unmanned Undersea Systems, 2020, 28(5): 532-537. doi: 10.11993/j.issn.2096-3920.2020.05.009

Simulation of Phase Transition Process of Underwater Thermal Glider Based on FLUENT

doi: 10.11993/j.issn.2096-3920.2020.05.009
  • Received Date: 2020-01-10
  • Rev Recd Date: 2020-04-25
  • Publish Date: 2020-10-31
  • The solid-liquid phase transition is key to enable a thermal glider to absorb and utilize the ocean temperature difference energy. The solid-liquid phase transition process is affected by many factors. Herein, based on the existence of natural convection, the effect of pressure on the solid-liquid phase transition process of a thermal glider is introduced. The simulation model of phase-change heat transfer in the heat pipe of an underwater thermal glider is established, and the heat pipe heat-transfer process under different pressures is simulated using ANSYS FLUENT 18.0 software. It is discovered that the pressure can change the melting temperature of the material and affect the phase transformation. With the increase in pressure, the melting temperature of the material increases, and the time required to achieve complete melting under the same temperature increases however, the time required for solidification decreases. If the melting point is higher than the temperature of the warm water layer, then the phase-change material cannot complete the phase-change process, and the thermal glider will not be able to operate stably. The simulation results facilitate the study of the phase-transition process of underwater thermal gliders.

     

  • loading
  • [1]
    刘永宽. 未来十年全球无人无缆自主式潜水器的发展趋势[J]. 机器人, 1994, 16(3): 185-192.
    [2]
    孔巧玲. 利用海洋温差能的水下热滑翔机相变过程和动力性能研究[D]. 上海: 上海交通大学, 2010.
    [3]
    倪园芳, 马捷. 水下滑翔机动力系统工作性能的研究[J]. 舰船科学技术, 2008, 30(3): 82-87.

    Ni Yuan-fang, Ma Jie. Research on the Drive System Performances of an Underwater Thermal Glider[J]. Ship Science and Technology, 2008, 30(3): 82-87.
    [4]
    任龙飞. 水下热滑翔机在弱温差和逆温差下的性能研究[D]. 上海: 上海交通大学, 2011.
    [5]
    王延辉, 王树新, 谢春刚. 基于温差能源的水下滑翔器动力学分析与设计[J]. 天津大学学报, 2007, 40(2): 133-138.

    Wang Yan-hui, Wang Shu-xin, Xie Chun-gang. Dynamic Analysis and System Design on an Underwater Glider Propelled by Temperature Difference Energy[J]. Journal of Tianjin University, 2007, 40(2): 133-138.
    [6]
    Yang Y, Wang Y, Ma Z, et al. A Thermal Engine for Underwater Glider Driven by Ocean Thermal Energy[J]. Applied Thermal Engineering, 2016, 99: 455-464.
    [7]
    梁泽德, 王树杰, 袁鹏, 等. 温差能驱动的垂直升降水下监测平台相变过程数值模拟[J]. 太阳能学报, 2015, 36(11): 2618-2624.

    Liang Ze-de, Wang Shu-jie, Yuan Peng, et al. Numerical Simulation of Phase Changing Process for Underwater Measuring Platform Moving on a Vertical Line Propelled by Ocean Thermal Energy[J]. Acta Energiae Solaris Sinica, 2015, 36(11): 2618-2624.
    [8]
    李国道. 石蜡基低温固液相变传热工质及其换热特性研究[D]. 秦皇岛: 燕山大学, 2013.
    [9]
    杨锐. 海洋浮标低温固—液相变材料的研究[D]. 武汉: 武汉工程大学, 2017.
    [10]
    马捷. 水下热滑翔机推进[M]. 上海: 上海交通大学出版社, 2013.
    [11]
    Henry H, Argyropoulos S A. Mathematical Modelling of Solidification and Melting: A Review[J]. Modelling & Simulation in Materials Science & Engineering, 1999, 4(4): 371.
    [12]
    叶宏, 何汉峰, 葛新石, 等. 利用焓法和有效热容法对定形相变材料熔解过程分析的比较研究[J]. 太阳能学报, 2004, 25(4): 488-491.

    Ye Hong, He Han-feng, Ge Xin-shi, et al. The Comparative Numerical Investigations on the Melting Process of Form-Stable Phase Change Material Using Enthalpy Formulation Method and Effective Heat Capacity Formulation Method[J]. Acta Energiae Solaris Sinica, 2004, 25(4): 488-491.
    [13]
    Ma Z, Wang Y, Wang S, et al. Ocean Thermal Energy Harvesting with Phase Change Material for Underwater Glider[J]. Applied Energy, 2016, 178: 557-566.
    [14]
    Xia Q C, Chen Y H. A New Model of Phase Change Process for Thermal Energy Storage[J]. Energy Research, 2018, 42: 3877-3887.
    [15]
    Santiago A, Rubén D, Otero, et al. Thermal Expansion Effects on the One-dimensional Liquid-solid Phase Transition in High Temperature Phase Change Materials[J]. AIP Advances, 2019, 9(2): 121-130.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(336) PDF Downloads(288) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return