• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
JIN Xiong, JIANG Run-xiang, CHENG Jin-fang, CHEN Xin-gang. A Depth Conversion Method of Shaft-Rate Electric Field Based on Envelope Signal[J]. Journal of Unmanned Undersea Systems, 2020, 28(4): 403-409. doi: 10.11993/j.issn.2096-3920.2020.04.008
Citation: JIN Xiong, JIANG Run-xiang, CHENG Jin-fang, CHEN Xin-gang. A Depth Conversion Method of Shaft-Rate Electric Field Based on Envelope Signal[J]. Journal of Unmanned Undersea Systems, 2020, 28(4): 403-409. doi: 10.11993/j.issn.2096-3920.2020.04.008

A Depth Conversion Method of Shaft-Rate Electric Field Based on Envelope Signal

doi: 10.11993/j.issn.2096-3920.2020.04.008
  • Received Date: 2019-10-04
  • Rev Recd Date: 2019-12-09
  • Publish Date: 2020-08-31
  • Only application of the horizontal time-harmonic dipole to the conversion of the shaft-rate electric field signal of ship will result in large near-field depth error. In this study, the variation laws of the current density in different position of hull surface and the shaft-ground resistance are clarified on the basis of simulation data. A depth conversion method of shaft-rate electric field is proposed based on its envelope signal. In this method, the depth conversion problem in the near field of the shaft-rate electric field signal envelope is transformed into the near-field conversion problem of equivalent static electric field after the calculation of the shaft-rate electric field signal envelope via Hilbert transform, and the point charge model is used to establish a forward and inversion model of the shaft-rate electric field signal envelope in the ‘air-sea-seabed’ three-layer media condition. The effectiveness of the proposed method is verified by four kinds of cathodic corrosion protection test data of the ship model. The results show that the proposed method can accurately calculate the shaft-rate electric field signal envelope. Taking root square error as evaluation criteria, the conversion error is less than 15% in the depth equaling the ship model width

     

  • loading
  • [1]
    Bostick F, Smith H, Boehl J. The Detection of ULF–ELF Emissions from Moving Ships[R].New York: State Academic Educational Institutions, 1977: 13-24..
    [2]
    Dymarkowski K, Uczciwek J. The Extremely Low Frequency Electromagnetic Signature of the Electric Field of the Ship[C]//Underwater Defence Technology Conference, London: IEEE, 2001, 1-6.
    [3]
    Zolotarevskii Y, Bulygin F, Ponomarev A, et al.Methods of Measuring the Low-frequency Electric and Magnetic Fields of Ships[J].Measurement Techniques, 2005, 48(11): 1140-1144.
    [4]
    Lü X C, Chen H Q, Ma S J, et al.The Electromagnetic Fi- eld Generated by Time-harmonic Electric Current Element in Shallow Sea[C]//Hardy T, Undersea Defence Techno- logy, Hamburg: IEEE, 2006.
    [5]
    Jia Y Z, Jiang R , Gong S G.Research on Wavelet Modulus Maximum-based Detection Algorithm of Ship’s Shaft-rate Electric Field[J].Acta Armamentarii, 2013, 34(5): 579-584.
    [6]
    Gheorghe S, Serghei R, Camelia C. Mesurements of Electrical and Magnetic Fields on Board Container Ships[C]//Proceedings of the Scientific Conference AFASES. Brasov. Rumania: Air Force Academy: 2013.
    [7]
    贾亦卓, 姜润翔, 龚沈光.基于小波模极大值的船舶轴频电场检测算法研究[J].兵工学报, 2013, 34(5): 579-584.

    Jia Yi-zhuo, Jiang Run-xiang, Gong Shen-guang.Research on Wavelet Modulus Maximum-based Detection Algori-thm of Ship’s Shaft-rate Electric Field[J]. Acta Electronica Sinica, 2013: 34(5): 549-584.
    [8]
    程锐, 姜润翔, 龚沈光.船舶轴频电场等效源强度计算[J].国防科技大学学报, 2016, 38(2): 138-143.

    Cheng Rui, Jiang Run-xiang, Gong Shen-guang. Calculation Method of Vessel’s Shaft Rate Electric Field Equivalent Source Magnitude[J]. Journal of National University of Defense Technology, 2016, 38(2): 138-143.
    [9]
    Daya Z A, Hutt D L, Richards Troy C. Maritime Electromagnetism and DRDC Management Research[R].Canada: Defence R&D Canada, 2005: 23-25.
    [10]
    熊露, 王斌, 毕晓文. 舰船轴频电场场源建模和实验研究[J]. 武汉理工大学学报, 2015, 37(7): 52-56.

    Xiong Lu, Wang Bin, Bi Xiao-wen. Modeling and Experimental Study of Ship’s Axial Frequency Electric Field Source[J]. Journal of Wuhan University of Technology, 2015, 37(7): 52-56.
    [11]
    林春生, 龚沈光.舰船物理场[M].北京: 兵器工业出版社, 2007.
    [12]
    Howard L C, Ballston L N. Naval Electro-chemical Corrosion Reducer: United States: 5052962[P]. 1990-10-1.
    [13]
    姜润翔, 林春生, 龚沈光.基于点电荷模型的舰船静电场反演算法研究[J].兵工学报, 2015, 36(3): 545-551.

    Jiang Run-xiang, Lin Chun-sheng, Gong Shen-guang. Electrostatic Electric Field Inversion Method for Ship Based on Point Charge Source Model[J]. Acta Electronica Sinica, 2015: 36(3): 545-551.
    [14]
    Parks A R, Thomas E D, Lucas K E. Physical Scale Modeling Verification with Shipboard Trials[J]. Material Performance, 1991, 30(5): 26-29.
    [15]
    邢少华, 张搏, 闫永贵, 等.涂层破损对船体阴极保护电位分布的影响[J]. 材料开发与应用, 2016, 31(1): 69-73.

    Xing Shao-hua, Zhang Bo, Yan Yong-gui, et al.The Influence of Coating Damage on Cathodic Protection Potential Distribution of Ship[J]. Development and Application of Materials, 2016, 31(1): 69-73.
    [16]
    DeGiorgi V G, Thomas E D II, Lucas K E, et al. A Combined Design Methodology for Impressed Current Cathodic Protection Systems[J]. Boundary Element Technology, 1996, 12(14): 335-344.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(428) PDF Downloads(200) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return