• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
ZHANG Chi-yu, PENG Qi-qi, MA Jun, CHEN Jian-hua, WANG Dong. Influences of the Number of Cross-Section Edges and Velocity on the Motion Characteristics of Underwater Acoustic Projectile[J]. Journal of Unmanned Undersea Systems, 2020, 28(3): 291-295. doi: 10.11993/j.issn.2096-3920.2020.03.008
Citation: ZHANG Chi-yu, PENG Qi-qi, MA Jun, CHEN Jian-hua, WANG Dong. Influences of the Number of Cross-Section Edges and Velocity on the Motion Characteristics of Underwater Acoustic Projectile[J]. Journal of Unmanned Undersea Systems, 2020, 28(3): 291-295. doi: 10.11993/j.issn.2096-3920.2020.03.008

Influences of the Number of Cross-Section Edges and Velocity on the Motion Characteristics of Underwater Acoustic Projectile

doi: 10.11993/j.issn.2096-3920.2020.03.008
  • Received Date: 2019-08-07
  • Rev Recd Date: 2019-10-09
  • Publish Date: 2020-06-30
  • The operational effectiveness of an acoustic projectile depends largely on its motion characteristics. Based on the detach eddy simulation(DES) model of the S-A turbulence model in FLUENT software, the flow field characteristics of underwater acoustic projectile motion are investigated with Reynolds number Re=2.5×106 as an example, and the accuracy of the simulation on the basis of the DES model under the high Reynolds number is demonstrated by comparing the investigation results with the known research results. The influences of the number of underwater acoustic projectile cross-section edges and motion velocity on the average drag coefficient, lift coefficient and Strouhal number are analyzed. The results show that: 1) the average lift coefficient decreases but the Strouhal number increases with the increase of the motion velocity; 2) when the Reynolds number is equal and the number of cross-section edges is different, the average drag coefficient decreases but the Strouhal number increases with the increase of the number of cross-section edges; 3) compared with other acoustic projectile structures, the square and circular structures have single and fixed falling-off frequency of vortex street, so they are easy to cause resonance and damage of projectile; and 4) the vortex street falling-off frequencies of the hexagonal and octagonal acoustic projectiles are not fixed, and these two structures are not easy to be damaged. This research may provide reference for rational design of acoustic projectile structure and improvement of operational effectiveness.

     

  • loading
  • [1]
    H.史里希廷. 边界层理论[M]. 北京: 科学出版社, 1991.
    [2]
    Achenbach E. Distribution of Local Pressure and Skin Friction around a Circular Cylinder in Cross-Flow up to Re =5×106[J]. Journal of Fluid Mechanics, 2000, 34(4): 625-639.
    [3]
    李燕玲, 苏中地. 高雷诺数下单圆柱绕流的DES三维数值模拟[J]. 中国计量学院学报, 2013, 24(4): 364-369.

    Li Yan-ling, Su Zhong-di. 3D Numerical Simulation of Flow over a Circular Cylinder at High Reynolds Numbers Using DES Method[M]. Journal of China Jiliang University, 2013, 24(4): 364-369.
    [4]
    祝志文. 高Re数圆柱绕流二维RANS模拟适用性分析[J]. 振动与冲击, 2013, 32(7): 98-101.

    Zhu Zhi-wen. Feasibility Analysis of 2D RANS Simulations for of Circular Cylinders Aevodynamics at High Re Number[J]. Journal of Vibration and Shock, 2013, 32(7): 98-101.
    [5]
    邓小兵. 不可压缩湍流大涡模拟研究[D]. 绵阳: 中国空气动力研究与发展中心, 2008.
    [6]
    Kravchenko A G, Moin P. Numerical Studies of Flow over a Circular Cylinder at Re=3900[J]. Physics of Fluids, 2000, 12(2): 403-417.
    [7]
    SpaIart P R, AIImaras S R. A One-Equation Turbulence Transport Model for Aerodynamic FIows[J]. Physics of Fluid, 2000(21): 648-654..
    [8]
    Breuer M. A Challenging Test Case for Large Eddy Simulation: High Reynolds Number Circular Cylinder Flow[J]. International Journal of Heat & Fluid Flow, 2000, 21(5): 648-654.
    [9]
    郝鹏, 李国栋, 杨兰, 等. 圆柱绕流流场结构的大涡模拟研究[J]. 应用力学学报, 2012, 29(4): 437-443.

    Hao Peng, Li Guo-dong, Yang Lan, et al. Large Eddy Simulation of the Circular Cylinder Flow in Different Regimes[J]. Chinese Journal of Applied Mechanics, 2012, 29(4): 437-443.
    [10]
    詹昊, 李万平, 方秦汉, 等. 不同雷诺数下圆柱绕流仿真计算[J]. 武汉理工大学学报, 2008, 30(12): 129-132.

    Zhan Hao, Li Wan-ping, Fang Qin-han, et al. Numerical Simulation of the Flow Around a Circular Cylinder at Varies Reynolds Number[J]. Journal of Wuhan University of Technology, 2008, 30(12): 129-132.
    [11]
    Spalart P R, Jou W H,Strelets M,et al.Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach[C]//Proceedings of 1st AFOSR International Conference on DNS/LES,Advances in DNS/LES.Columbus:Greyden Press,1997:137-147.
    [12]
    Breuer M. A Challenging Test Case for Large Eddy Simulation: High Reynolds Number Circular Cylinder Flow[J]. International Journal of Heat and Fluid Flow, 2000, 21(5): 648-654.
    [13]
    Weston D E. Underwater Explosions as Acoustic Sources[J]. Proc. Phys. Soc., 1960, 76(2): 233-249.
    [14]
    Stemberg H M. Underwater Detonation of Pentolite Cyl-inders[J]. Physics of Fluids, 1995, 30(3): 761-769.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(369) PDF Downloads(214) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return