• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
WANG Xiang, ZHANG Yong-lin. Fractional-Order Sliding Mode Control Based on RBF Neural Network for AUV Path Tracking[J]. Journal of Unmanned Undersea Systems, 2020, 28(3): 284-290. doi: 10.11993/j.issn.2096-3920.2020.03.007
Citation: WANG Xiang, ZHANG Yong-lin. Fractional-Order Sliding Mode Control Based on RBF Neural Network for AUV Path Tracking[J]. Journal of Unmanned Undersea Systems, 2020, 28(3): 284-290. doi: 10.11993/j.issn.2096-3920.2020.03.007

Fractional-Order Sliding Mode Control Based on RBF Neural Network for AUV Path Tracking

doi: 10.11993/j.issn.2096-3920.2020.03.007
  • Received Date: 2018-12-06
  • Rev Recd Date: 2019-01-04
  • Publish Date: 2020-06-30
  • Aiming at the path tracking problem of autonomous undersea vehicle(AUV) in the process of docking, a frac-tional-order sliding mode control algorithm based on radial basis function(RBF) neural network is proposed. Firstly, the AUV path tracking control algorithm is designed based on sliding mode control, the fractional calculus is introduced into the constant velocity reaching law of sliding mode control to alleviate the shaking of the system. Then, the RBF neural network is used to compensate for uncertainty in the AUV motion model and for external interference. Finally, the stability of the control system is proved by Lyapunov stability theory. Simulation results show that the designed controller can effectively track the path of AUV. Compared with the traditional sliding mode control and the fractional-order sliding mode control without considering system uncertainty and external interference, the proposed control method has faster tracking speed, higher stability and better tracking performance.

     

  • loading
  • [1]
    孙叶义, 武皓微, 李晔, 等. 智能无人水下航行器水下回收对接技术综述[J]. 哈尔滨工程大学学报, 2019, 40(1): 1-11.

    Sun Ye-yi, Wu Hao-wei, Li Ye, et al. Summary of AUV Underwater Recycle Docking Technology[J]. Journal of Harbin Engineering University, 2019, 40(1): 1-11.
    [2]
    Palomeras N, Vallicrosa G, Mallios A, et al. AUV Homing and Docking for Remote Operations[J]. Ocean Engineering, 2018(154): 106-120.
    [3]
    Petersen M J, Pedersen P T. Collision between Ships and Offshore Platform[C]//Proceeding of 13th Annual Offshore Technology Conference. Houston, US: OTC4134, 2011, 163-171.
    [4]
    史剑光, 李德骏, 杨灿军, 等. 水下自主机器人接驳碰撞过程分析[J]. 浙江大学学报(工学版), 2015, 49(3): 497-504.

    Shi Jian-guang, Li De-jun, Yang Can-jun, et al. Impact Analysis during Docking Process of Autonomous Underwater Vehicle[J]. Journal of Zhejiang University(Engi- neering Science), 2015, 49(3): 497-504.
    [5]
    Mitra A, Panda J P, Warrior H V. The Effects of Free Stream Turbulence on the Hydrodynamic Characteristics of an AUV Hull Form[J]. Ocean Engineering, 2019(174): 148-158.
    [6]
    Marani G, Choi S K, YUH.J. Underwater Autonomous Manipulation for Intervention Missions AUVs[J]. Ocean Engineering, 2009, 36(1): 15-23.
    [7]
    李岳明. 多功能自主式水下机器人运动控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
    [8]
    Carlucho I, Paula M D, Wang S, et al. Adaptive Low-Level Control of Autonomous Underwater Vehicles Using Deep Reinforcement Learning[J]. Robotics and Autonomous Systems, 2018(107): 71-86
    [9]
    Liang X, Wan L, Blake J, et al. Path Following of an Under Actuated AUV Based on Fuzzy Back-Stepping Sliding Mode Control[J]. International Journal of Advanced Robotic Systems, 2016, 13(122): 1-11.
    [10]
    蒋云彪, 郭晨, 于浩淼. 基于反步滑模算法的水下无人航行器变深控制[J]. 船舶工程, 2018, 40(2): 83-87.

    Jiang Yun-biao, Guo Chen, Yu Hao-miao. Diving Control of Unmanned Underwater Vehicle Based on Backstepping Sliding Model Algorithm[J]. Ship Engineering, 2018, 40(2): 83-87.
    [11]
    赵杰梅, 胡忠辉. 基于动态反馈的AUV水平面路径跟踪控制[J]. 浙江大学学报(工学版), 2018, 52(8): 1467- 1473, 1481.

    Zhao Jie-Mei, Hu Zhong-Hui. Path Following Control of AUV in Horizontal Plane Based on Dynamic Feedback Control[J]. Journal of Zhejiang University(Engineering Science), 2018, 52(8): 1467-1473, 1481.
    [12]
    Lakhekar G, Deshpande R. Diving Control of Autonomous Underwater Vehicles via Fuzzy Sliding Mode Technique[C]//International Conference on Circuit, Power and Computing Technologies. Jeju, South Korea: IEEE, 2015.
    [13]
    张鑫, 李嘉欣. 基于分数阶微积分的机械臂滑模控制的研究[J/OL]. 系统仿真学报, http://kns.cnki.net/kcms/de tail/11.3092.V.20190213.1217.016.html.
    [14]
    张碧陶, 高福荣, 姚科. 集成神经网络与自适应算法的分数阶滑模控制[J]. 控制理论与应用, 2016, 33(10): 1373-1377.

    Zhang Bi-tao, Gao Fu-rong, Yao Ke. Neural Network and Adaptive Algorithm-Based Fractional Order Sliding Mode Controller[J]. Control Theory & Applications, 2016, 33(10): 1373-1377.
    [15]
    程春蕊, 朱军辉, 王东晓. 分数阶不确定四翼混沌系统的自适应滑模同步[J]. 华中师范大学学报(自然科学版), 2018, 52(2): 155-159.

    Cheng Chun-rui, Zhu Jun-hui, Wang Dong-xiao. Adaptive Synchronization of Fractional-Order Four-Wings Chaotic Systems with Uncertainties Based on Sliding Mode Control[J]. Journal of HuaZhong Normal University(Natural Sciences), 2018, 52(2): 155-159.
    [16]
    何晓燕, 张永林. 水下遥作业系统的协调控制的研究[J]. 船舶工程, 2013, 35(3): 67-70.
    [17]
    Källström C G. Guidance and Control of Ocean Vehicles[J]. Automatica, 1996, 32(8): 1235.
    [18]
    Li Y, Chen Y, Podlubny I. Mittag-Leffler Stability of Fractional Order Nonlinear Dynamic Systems[J]. Automatica, 2009, 45(8): 1965-1969.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1585) PDF Downloads(217) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return