• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
HEN Jia-jie, WANG Zhong, CAO Xiao-juan, ZHANG Qin-nan, CAI Wei-jun. Trajectory Design of High-Altitude Gliding Torpedo Based on Optimal Guidance Law[J]. Journal of Unmanned Undersea Systems, 2020, 28(3): 278-283. doi: 10.11993/j.issn.2096-3920.2020.03.006
Citation: HEN Jia-jie, WANG Zhong, CAO Xiao-juan, ZHANG Qin-nan, CAI Wei-jun. Trajectory Design of High-Altitude Gliding Torpedo Based on Optimal Guidance Law[J]. Journal of Unmanned Undersea Systems, 2020, 28(3): 278-283. doi: 10.11993/j.issn.2096-3920.2020.03.006

Trajectory Design of High-Altitude Gliding Torpedo Based on Optimal Guidance Law

doi: 10.11993/j.issn.2096-3920.2020.03.006
  • Received Date: 2019-07-22
  • Rev Recd Date: 2019-09-05
  • Publish Date: 2020-06-30
  • In the process of attacking submarines, the high-altitude gliding torpedo can increase the attack range by gliding extended range, and can attack outside the submarine defense area to effectively improve the survivability of carrier aircrafts. The air trajectory of the high-altitude gliding torpedo includes gliding extended range trajectory and parachute trajectory, and at the end of the gliding extended range trajectory, the torpedo will separate from its glider and open the parachute. As a result, the terminal trajectory constraint of the high-altitude gliding torpedo is more complicated than normal airdropped torpedo. To satisfy the terminal position and terminal trajectory inclination angle constraints, a trajectory model of high-altitude gliding torpedo is established based on the optimal control principle, and an optimal guidance law is proposed in this paper. According to the optimal guidance law and the overload control principle, the integral overload control method of the glider is given. The trajectory simulations between the traditional proportional navigation(PN) and the proposed optimal guidance law are compared. The results show that PN can satisfy the position constraint, which contains the horizontal control accuracy and the separation altitude of glider and torpedo, but exerts no control over the trajectory inclination, while the optimal guidance law can satisfy not only the constraints of horizontal control accuracy and separation altitude, but also the constraint of terminal trajectory inclination angle.

     

  • loading
  • [1]
    杨世兴, 李乃晋, 徐宣智, 等. 空投鱼雷技术[M]. 昆明: 云南科技出版社, 2001.
    [2]
    王志杰. 研制高空反潜鱼雷的必要性及关键技术[J]. 鱼雷技术, 2009, 17(3): 1-4.

    Wang Zhi-jie. Necessity and Key Technologies for Deve- loping High Altitude Anti-submarine Torpedo[J]. Torpedo Technology, 2009, 17(3): 1-4.
    [3]
    帅智浩, 曹小娟, 王志杰. 鱼雷高空投送载体结构设计特性研究[J]. 鱼雷技术, 2014, 22(4): 241-244, 253.

    Shuai Zhi-hao, Cao Xiao-juan, Wang Zhi-jie. Analysis on Structural Design Characteristics of High Altitude Delivery Carrier of Torpedo[J]. Torpedo Technology, 2014, 22(4): 241-244, 253.
    [4]
    朱清浩, 吴锐, 朱君. 潜射防空导弹发展与应用现状综述[J]. 科技创新导报, 2010(3): 1, 3.
    [5]
    李伟, 荣海洋, 刘海光. 潜空作战与高空反潜概念武器[J]. 飞航导弹, 2010(6): 33-37.
    [6]
    潘光, 吴文辉, 毛昭勇, 等. 高空远程滑翔鱼雷全弹道仿真关键技术[J]. 鱼雷技术, 2009, 17(4): 10-15.

    Pan Guang, Wu Wen-hui, Mao Zhao-yong, et al. Key Technologies about Complete Trajectory Simulation for High Altitude Long-range Gliding Torpedo[J]. Torpedo Technology, 2009, 17(4): 10-15.
    [7]
    谢力波, 李瑞红, 程辉辉. 航空反潜的新需求-高空反潜武器[J]. 飞航导弹, 2016(1): 40-43.
    [8]
    钱东, 孙正杰. 新型空潜攻防武器及其对反潜战的影响[J]. 鱼雷技术, 2008, 16(6): 1-8.

    Qian Dong, Sun Zheng-jie. Anti-submarine Warfare(ASW) Weapons and Sub-to-air Missile with Influences on Future ASW[J]. Torpedo Technology, 2008, 16(6): 1-8.
    [9]
    张礴, 宋保维, 王司令. 高空远程滑翔鱼雷弹道建模与仿真[J]. 弹箭与制导学报, 2012, 32(2): 144-146.

    Zhang Bo, Song Bao-wei, Wang Si-ling. Modeling and Trajectory Simulation for High Altitude Longrange Gliding Torpedo[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(2): 144-146.
    [10]
    帅智浩, 严海, 曹小娟, 等. 高空投送载体组合结构模态分析[J]. 鱼雷技术, 2015, 23(2): 81-85.

    Shuai Zhi-hao, Yan Hai, Cao Xiao-juan, et al. Modal Analysis on the Composite Structure of High Altitude Delivery Carrier[J]. Torpedo Technology, 2015, 23(2): 81-85.
    [11]
    张克涵, 温杰, 顾李冯, 等. 远程高空滑翔UUV的最优控制设计与仿真[J]. 测控技术, 2013, 32(3): 66- 69.

    Zhang Ke-han, Wen Jie, Gu Li-feng, et al. Optimal Control Design and Simulation of High-Altitude Long-Range Glider UUV[J]. Measurement & Control Technology, 2013, 32(3): 66-69.
    [12]
    刘哲, 王立文, 张秦南. 火箭助飞鱼雷纵向通道制导系统参数设计及仿真[J]. 鱼雷技术, 2006, 14(3): 52-54.

    Liu Zhe, Wang Li-wen, Zhang Qin-nan. Controller Parameters Design and Simulation of Vertical Channel Guidance System for Rocket-Assisted Torpedo[J]. Torpedo Technology, 2006, 14(3): 52-54.
    [13]
    穆育强, 盛安冬. 基于复合制导的简易航弹制导控制系统设计[J]. 火力与指挥控制, 2010, 35(5): 83-85.

    Mu Yu-qiang, Sheng An-dong. Design of Guidance Control System based on Combined Guidance for Simple Guided Bomb[J]. Fire Control & Command Control, 2010, 35(5): 83-85.
    [14]
    赵红志. P-3C型“猎户座”岸基反潜巡逻机[J]. 环球军事, 2001(10): 10-12.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(317) PDF Downloads(177) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return