• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
LIU Fu-qiang, LUO Kai, HUANG Chuang, GU Jian-xiao, DONG Xing-jie, PU Han-ping. Study on Ballistic Characteristics of the Parallel Supercavitating Projectiles[J]. Journal of Unmanned Undersea Systems, 2020, 28(2): 202-208. doi: 10.11993/j.issn.2096-3920.2020.02.013
Citation: LIU Fu-qiang, LUO Kai, HUANG Chuang, GU Jian-xiao, DONG Xing-jie, PU Han-ping. Study on Ballistic Characteristics of the Parallel Supercavitating Projectiles[J]. Journal of Unmanned Undersea Systems, 2020, 28(2): 202-208. doi: 10.11993/j.issn.2096-3920.2020.02.013

Study on Ballistic Characteristics of the Parallel Supercavitating Projectiles

doi: 10.11993/j.issn.2096-3920.2020.02.013
  • Received Date: 2019-08-22
  • Rev Recd Date: 2019-09-24
  • Publish Date: 2020-04-30
  • To investigate the effects of the spacing of parallel projectiles on the hydrodynamic properties and ballistic characteristics of the projectiles, a water-entry simulation model of projectiles is established on the bases of the volume of fluid(VOF) multiphase flow model, the multi-reference system, the dynamic grid and the mobile computing domain technology. The water-entry free-deceleration processes of single projectile and parallel projectiles are simulated for different spacing of the projectiles, respectively. The results show that: 1) in parallel launching condition, the projectile is subjected to lateral force, when there is an angle of attack, the cavity has obvious offset and is easier to be punctured by the projectile, and the smaller the parallel spacing, the longer the puncturing distance; 2) the drag coefficient of the parallel projectiles is significantly higher than that of the single projectile, and when the parallel spacing is 75 mm, the drag coef-ficient increases by 34.92%; and 3) the stability of the parallel projectiles is affected by the parallel spacing, and in the case that the parallel spacing is 50 mm, the parallel projectiles overturn with instable trajectories, but this effect gradually weakens as the parallel spacing increases, and the trajectories of the parallel projectiles become stable when the parallel spacing is 100 mm. This research may provide reference for engineering application of parallel supercavitating projectiles.

     

  • loading
  • [1]
    杨志宏, 李志阔. 巡航导弹水下发射技术综述[J]. 飞航导弹, 2013(6): 37-38, 59.
    [2]
    Fu H P, Lu C J, Li J. Numerical Research on Drag Reduction Characteristics of Supercavitating Body of Revolution[J]. Journal of Ship Mechanics, 2004,8(3): 1-7.
    [3]
    Saranjam B. Experimental and Numerical Investigation of an Unsteady Supercavitating Moving Body[J]. Ocean Engineering, 2013, 59(2): 9-14.
    [4]
    Yao E R, Wang H R, Pan L, et al. Vertical Water-Entry of Bullet-Shaped Projectiles[J]. Journal of Applied Mathem- atics & Physics, 2014, 2(6): 323-334.
    [5]
    周景军. 通气超空泡流动及航行体流体动力数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
    [6]
    郭子涛. 弹体入水特性及不同介质中金属靶的抗侵彻性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
    [7]
    梁景奇. 水下运动体流场耦合数值研究[D]. 西安: 西北工业大学, 2018.
    [8]
    金大桥. 水下动能射弹空泡形态及流体动力特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
    [9]
    魏海鹏, 符松. 不同多相流模型在航行体出水流场数值模拟中的应用[J]. 振动与冲击, 2015, 34(4): 48-52.

    Wei Hai-peng, Fu Song. Multiphase Models for Flow Field Numerical Simulation of a Vehicle Rising from Water[J]. Journal of Vibration and Shock, 2015, 34(4): 48-52.
    [10]
    Shih T. A New k-e Eddy Viscosity Model for High Reynolds Number Turbulent Flows [J]. Computers Fluids, 1995, 24(3): 227-238.
    [11]
    Singhal A. Mathematical Basis and Validation of the Full Cavitation Model[J]. Journal of Fluids Engineering, 2002, 124(3): 617-624.
    [12]
    Schnerr G H, Sauer J. Physical and Numerical Modeling of Unsteady Cavitation Dynamics[C]//The 4th International Conference on Multiphase Flow. New Orleans, USA: ICMF, 2001.
    [13]
    Issa R, Luo J Y, Gosman D. Prediction of Impeller Induced Flows in Mixing Vessels using Multiple Frames of Reference[C]//The 8th European Conference on Mixing, Imeche Symposium. Cambridge, UK: EFCE, 1994.
    [14]
    Snyder D, Koutsavdis E, Anttonen J. Transonic Store Separation using Unstructured CFD with Dynamic Meshing[C]//The 33rd AIAA Fluid Dynamics Conference and Exhibit. Orlando, USA: AIAA, 2013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(609) PDF Downloads(227) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return