• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
XU Sheng, YI Yin, SHI Xiao-feng, ZONG Xiao, HAN Xin-bo. Numerical Simulation on Submerged Jet Reaction of Molten Aluminum and Water Vapor[J]. Journal of Unmanned Undersea Systems, 2020, 28(2): 187-193. doi: 10.11993/j.issn.2096-3920.2020.02.011
Citation: XU Sheng, YI Yin, SHI Xiao-feng, ZONG Xiao, HAN Xin-bo. Numerical Simulation on Submerged Jet Reaction of Molten Aluminum and Water Vapor[J]. Journal of Unmanned Undersea Systems, 2020, 28(2): 187-193. doi: 10.11993/j.issn.2096-3920.2020.02.011

Numerical Simulation on Submerged Jet Reaction of Molten Aluminum and Water Vapor

doi: 10.11993/j.issn.2096-3920.2020.02.011
  • Received Date: 2018-12-06
  • Rev Recd Date: 2019-01-04
  • Publish Date: 2020-04-30
  • The submerged jet reaction of molten aluminum and water vapor can be used as a new method of hydrogen generation in hydrogen-oxygen closed cycle power system, and can improve the rate of hydrogen generation and the stability and controllability of hydrogen generator. However, this reaction has the characteristics of high temperature, opacity and complex local flow state, so it is difficult to observe the flow field through conventional methods. In order to explore the flow field characteristics of the reaction, this paper uses the non-premixed combustion model in the software Fluent to conduct a numerical simulation on this reaction. The accuracy of probability density function(PDF) query table is improved by the ideal mixture density calculation method, so that the numerical model can simulate the gas-liquid reaction more accurately, and can obtain the parameter distribution of the reaction jet flow field of molten aluminum and water vapor, the variation law of the temperature distribution of flow field and the water vapor core region under different inlet velocities of water vapor. The results show that the numerical model used in this paper can simulate jet combustion reaction reasonably; The flow field of molten aluminum-water vapor reaction jet is composed of water vapor core region and mixed product region, where the water vapor core region occupies much less space in the jet region than the mixed product region; When the inlet velocity of water vapor increases, the highest temperature and volume of the high temperature region rise, and the length of the water vapor core region increases. This research may provide a reference for further study on submerged jet reaction of molten aluminum and water vapor and the design of hydrogen generator.

     

  • loading
  • [1]
    Chan S H. Multiphase Turbulent Liquid Metal Fuel Combustion[J]. Prog Energy Combust Sci, 1993, 19: 105-143.
    [2]
    Avery J F, Faeth G M. Combustion of a Submerged Gaseous Oxidizer Jet in a Liquid Metal[J]. Symposium (International) on Combustion, 1975, 15(1): 501-512.
    [3]
    Cho D H , Armstrong D R, Bova L. Experimental Study of Reacting Gas Jets in Liquids: Heat Release Effects[J]. Chemical Engineering Science, 1990, 45(2): 423-435.
    [4]
    Parnell L A, Gilchrist J T, Edmunds D G. Characteristics of Reaction Zones in Closed Liquid Metal Combustion[C]//24th Joint Propulsion Conference. Boston, USA: AIAA, 1988.
    [5]
    张会强, 林文漪, 周力行. 锂(l)/六氟化硫(g)气-液浸没有反应射流和燃烧的数值研究[J]. 工程热物理学报, 1996, 17(4): 482-486.

    Zhang Hui-qiang, Lin Wen-yi, Zhou Li-xing. Numerical Simulation of Gaseous-SF6 Submerged-jet Combustion in Liquid Lithium[J]. Journal of Engineering Thermophysics, 1996, 17(4): 482-486.
    [6]
    郑邯勇, 卜建杰, 王树峰, 等. 氯化氢气在氨水中浸没喷射的研究[J]. 推进技术, 1995, 16(3): 70-77.

    Zheng Han-yong, Bu Jian-jie, Wang Shu-feng, et al. A Study on Submerged Penetration of Gaseous Hydrogen Chloride into Ammonia Water[J]. Journal of Propulsion Technology, 1995, 16(3): 70-77.
    [7]
    郑邯勇, 卜建杰. 六氟化硫在熔融锂中的浸没喷射反应过程[J]. 化工学报, 1996, 47(6): 656-662.

    Zheng Han-yong, Bu Jian-jie. The Submerged Jet Reaction Process of Sulfur Hexafluoride into Molten Lithium[J]. Journal of Chemical Industry and Engineering, 1996, 47(6): 656-662.
    [8]
    李侃侃, 程惠尔, 臧家亮. 用均质流模型研究SF6/Li燃烧体系[J]. 上海交通大学学报, 1999, 33(8): 1017-1019.

    Li Kan-kan, Chen Hui-er, Zang Jia-liang. Study on SF6/Li Combustion System Using the Model of Homogeneous Flow[J]. Journal of Shanghai Jiaotong University, 1999, 33(8): 1017-1019.
    [9]
    张文群, 张振山. 应用Gibbs自由能最小法研究Li/SF6气液浸没燃烧反应[J]. 兵工学报, 2005, 26(6): 812-815.

    Zhang Wen-qun, Zhang Zhen-shan. A Study on Li/SF6 Gas-liquid Fuel Combustion with the Minimum of Gibbs Energy[J]. Acta Armamentarii, 2005, 26(6): 812-815.
    [10]
    Milani M, Montorsi L, Paltrinieri F, et al. Experimental and Numerical Analysis of the Combustor for a Cogeneration System Based on the Aluminum/Water Reaction[J]. Energy Conversion and Management, 2014, 87: 1291-1296.
    [11]
    施伟, 胡逸, 陈之厦, 等. 高温铝水反应器内反应与传热过程建模及计算[J]. 动力工程学报, 2019, 39(6): 447-453.

    Shi Wei, Hu Yi, Chen Zhi-sha, et al. Modelling and Calculations for the Reaction and Heat-transfer Processes in a High-temperature Aluminum Water Reactor[J]. Journal of Chinese Society of Power Engineering, 2019, 39(6): 447-453.
    [12]
    刘红, 解茂昭, 李科, 等. 泡沫金属湍流射流发泡过程数值模拟研究[J]. 材料科学与工艺, 2007, 15(2): 177-181.

    Liu Hong, Xie Mao-zhao, Li Ke, et al. Numerical Simulation of Turbulent Bubbling Flow Induced by Gas Jet into Metal Melt[J]. Materials Science and Technology, 2007, 15(2): 177-181.
    [13]
    朱天宇, 殷立宝, 张成, 等. 掺烧不同种类污泥锅炉的燃烧特性[J]. 热力发电, 2015, 44(6): 1-9.

    Zhu Tian-yu, Yin Li-bao, Zhang Cheng, et al. Eddy-dissipation Model Based Numerical Simulation on Co-combustion Characteristics of a Coal-fired Boiler Co-firing With Different Kinds of Sludge[J]. Thermal Power Generation, 2015, 44(6): 1-9.
    [14]
    庄志国, 魏伟胜, 徐建. 天然气制合成气固定床反应器的进料方式[J]. 化工进展, 2010, 29(z1): 411-419.

    Zhuang Zhi-guo, Wei Wei-sheng, Xu Jian. The Feeding Method of Fixed Bed Reactor for Natural Gas Prepares Synthesis Gas[J]. Chemical Industry and Engineering Progress, 2010, 29(z1): 411-419.
    [15]
    Bergmann V, Meier W, Wolff D, et al. Application of Spontaneous Raman and Rayleigh Scattering and 2D LIF for the Characterization of a Turbulent CH4/H2/N2 Jet Diffusion Flame[J]. Applied Physics B, 1998, 66: 489-502.
    [16]
    Sandia National Laboratories. CH4/H2/N2 Jet Flames[DB/OL]. (2000-04-28)[2018-12-03].https://www.sandia.gov/TNF/DataArch/DLRflames.html.
    [17]
    Emami M D, Fard A E. Laminar Flamelet Modeling of a Turbulent CH4/H2/N2 Jet Diffusion Flame Using Artificial Neural Networks[J]. Applied Mathematical Modelling, 2012, 36(5): 2082-2093.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(455) PDF Downloads(168) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return