
| Citation: | LI Qi-fei, WU Fang, HAN Lei-lei, FAN Zhao-peng, LI Pei-zong. Detection Method of Magnetic Anomaly Signals Based on AlexNet Transfer Learning[J]. Journal of Unmanned Undersea Systems, 2020, 28(2): 162-167. doi: 10.11993/j.issn.2096-3920.2020.02.007 |
| [1] |
林君, 刁庶, 张洋, 等. 地球物理矢量场磁测技术的研究进展[J]. 科学通报, 2017, 62(23): 2606-2618.
Lin Jun, Diao Shu, Zhang Yang, et al. Research Progress of Geophysical Vector Magnetic Field Survey Technology[J]. Chin Sci Bull, 2017, 62(23): 2606-2618.
|
| [2] |
周家新, 陈建勇, 单志超, 等. 航空磁探中潜艇目标的联合估计检测方法研究[J]. 兵工学报, 2018, 39(5): 833- 840.
Zhou Jia-xin, Chen Jian-yong, Shan Zhi-chao, et al. Research on Joint Estimation and Detection of Submarine Target in Airborne Magnetic Anomaly Detection[J]. Acta Armamentarii, 2018, 39(5): 833-840.
|
| [3] |
Ginzburg B, Frumkis L, Kaplan Z, et al. Processing of Magnetic Scalar Gradiometer Signals Using Orthonormalized Functions[J]. Sensors, 2002, 102(1): 67-75.
|
| [4] |
Sheinker A, Frumkis L, Ginzburg B, et al. Magnetic Anomaly Detection Using a Three-Axis Magnetometer[J]. IEEE Transactions on Magnetics, 2009, 45(1): 160-167.
|
| [5] |
张坚, 林春生, 黄凡. OBF分解与BP网络在船舶磁场信号检测中的应用[J]. 船电技术, 2011, 31(7): 13-16.
Zhang Jian, Lin Chun-sheng, Huang Fan. Application of OBF Decomposition and BP Neural Network to Magnetic Signal Detection of a Ship[J]. Marine Electric & Electronic Technology, 2011, 31(7): 13-16.
|
| [6] |
张坚, 林春生, 邓鹏, 等. 基于小波域OBF分解的磁异常信号检测算法[J]. 弹箭与制导学报, 2011, 31(6): 187-189.
Zhang Jian, Lin Chun-sheng, Deng Peng, et al. Detection of Magnetic Anomaly Signal Based on OBF Decomposition in Wavelet Domain[J]. Journal of Projectiles, Rockets, Mi- ssiles and Guidance, 2011, 31(6): 187-189.
|
| [7] |
王珺琳, 陈博. 基于运动目标的OBF方法检测性能分析[J]. 中国电子科学研究院学报, 2017, 12(1): 47-51.
Wang Jun-lin, Chen Bo. The Analysis of OBF Detection Performance Based on Moving Object[J]. Journal of China Academy of Electronics and Information Technology, 2017, 12(1): 47-51.
|
| [8] |
Wan C, Pan M, Zhang Q, et al. Magnetic Anomaly Detection Based on Stochastic Resonance[J]. Sensors Actuators A Physical, 2018, 278: 11-17.
|
| [9] |
Sheinker A, Moldwin M B. Magnetic Anomaly Detection(MAD) of Ferromagnetic Pipelines Using Principal Component Analysis(PCA)[J]. Measurement Science and Technology, 2016, 27(4): 045104.
|
| [10] |
Sheinker A, Salomonski N, Ginzburg B, et al. Magnetic Anomaly Detection Using Entropy Filter[J]. Measurement Science, 2008, 19(4): 045205.
|
| [11] |
Sheinker A, Ginzburg B, Salomonski N, et al. Magnetic Anomaly Detection Using High-Order Crossing Method [J]. Transactions on Geoscience, 2012, 50(4): 1095-1103.
|
| [12] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classi-fication with Deep Convolutional Neural Net-works[C]//NIPS’12: Proceedings of the 27th International Conference on Neural Information Processing Systems. USA: Massachusetts Institute of Technology Press, 2012, 1: 1097-1105.
|
| [13] |
Yosinski J, Clune J, Bengio Y, et al. How Transferable are Features in Deep Neural Networks[C]//NIPS’14: Proceedings of the 27th International Conference on Neural Information Processing Systems. USA: Massachusetts Institute of Technology Press, 2014, 2: 3320-3328.
|
| [14] |
Cun Y L, Boser B, Denker J S, et al. Handwritten Digit Recognition with a Back-Propagation Network[C]//Advances in Neural Information Processing Systems. USA: Massachusetts Institute of Technology Press, 1990, 2: 396-404.
|