• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
LI Qi-fei, WU Fang, HAN Lei-lei, FAN Zhao-peng, LI Pei-zong. Detection Method of Magnetic Anomaly Signals Based on AlexNet Transfer Learning[J]. Journal of Unmanned Undersea Systems, 2020, 28(2): 162-167. doi: 10.11993/j.issn.2096-3920.2020.02.007
Citation: LI Qi-fei, WU Fang, HAN Lei-lei, FAN Zhao-peng, LI Pei-zong. Detection Method of Magnetic Anomaly Signals Based on AlexNet Transfer Learning[J]. Journal of Unmanned Undersea Systems, 2020, 28(2): 162-167. doi: 10.11993/j.issn.2096-3920.2020.02.007

Detection Method of Magnetic Anomaly Signals Based on AlexNet Transfer Learning

doi: 10.11993/j.issn.2096-3920.2020.02.007
  • Received Date: 2018-12-06
  • Rev Recd Date: 2019-01-04
  • Publish Date: 2020-04-30
  • Aiming at the problem in aviation antisubmarine that the magnetic anomaly signals of underwater targets are difficult to detect under low signal-to-noise ratio(SNR), a detection method of magnetic anomaly signals based on AlexNet transfer learning is proposed. Based on the principle of convolution neural network, a large number of signal sequences are obtained by simulating different situations of underwater targets and different flight routes and speeds of the aeromagnetic platform with Gaussian white noise, so as to simulate the signals measured by the magnetic detection platform. Then, the short-time Fourier transform(STFT) is applied to obtain the time-frequency diagram, and the time-frequency features are transferred and trained by using the AlexNet. Finally, the trained AlexNet deep convolutional neural network is tested by the test set. The results show that the AlexNet model has good generalization ability in the field of magnetic anomaly signal detection. When the SNR is -8 dB and the false alarm rate is 3%, the detection probability of magnetic anomaly signal reaches 93%.

     

  • loading
  • [1]
    林君, 刁庶, 张洋, 等. 地球物理矢量场磁测技术的研究进展[J]. 科学通报, 2017, 62(23): 2606-2618.

    Lin Jun, Diao Shu, Zhang Yang, et al. Research Progress of Geophysical Vector Magnetic Field Survey Technology[J]. Chin Sci Bull, 2017, 62(23): 2606-2618.
    [2]
    周家新, 陈建勇, 单志超, 等. 航空磁探中潜艇目标的联合估计检测方法研究[J]. 兵工学报, 2018, 39(5): 833- 840.

    Zhou Jia-xin, Chen Jian-yong, Shan Zhi-chao, et al. Research on Joint Estimation and Detection of Submarine Target in Airborne Magnetic Anomaly Detection[J]. Acta Armamentarii, 2018, 39(5): 833-840.
    [3]
    Ginzburg B, Frumkis L, Kaplan Z, et al. Processing of Magnetic Scalar Gradiometer Signals Using Orthonormalized Functions[J]. Sensors, 2002, 102(1): 67-75.
    [4]
    Sheinker A, Frumkis L, Ginzburg B, et al. Magnetic Anomaly Detection Using a Three-Axis Magnetometer[J]. IEEE Transactions on Magnetics, 2009, 45(1): 160-167.
    [5]
    张坚, 林春生, 黄凡. OBF分解与BP网络在船舶磁场信号检测中的应用[J]. 船电技术, 2011, 31(7): 13-16.

    Zhang Jian, Lin Chun-sheng, Huang Fan. Application of OBF Decomposition and BP Neural Network to Magnetic Signal Detection of a Ship[J]. Marine Electric & Electronic Technology, 2011, 31(7): 13-16.
    [6]
    张坚, 林春生, 邓鹏, 等. 基于小波域OBF分解的磁异常信号检测算法[J]. 弹箭与制导学报, 2011, 31(6): 187-189.

    Zhang Jian, Lin Chun-sheng, Deng Peng, et al. Detection of Magnetic Anomaly Signal Based on OBF Decomposition in Wavelet Domain[J]. Journal of Projectiles, Rockets, Mi- ssiles and Guidance, 2011, 31(6): 187-189.
    [7]
    王珺琳, 陈博. 基于运动目标的OBF方法检测性能分析[J]. 中国电子科学研究院学报, 2017, 12(1): 47-51.

    Wang Jun-lin, Chen Bo. The Analysis of OBF Detection Performance Based on Moving Object[J]. Journal of China Academy of Electronics and Information Technology, 2017, 12(1): 47-51.
    [8]
    Wan C, Pan M, Zhang Q, et al. Magnetic Anomaly Detection Based on Stochastic Resonance[J]. Sensors Actuators A Physical, 2018, 278: 11-17.
    [9]
    Sheinker A, Moldwin M B. Magnetic Anomaly Detection(MAD) of Ferromagnetic Pipelines Using Principal Component Analysis(PCA)[J]. Measurement Science and Technology, 2016, 27(4): 045104.
    [10]
    Sheinker A, Salomonski N, Ginzburg B, et al. Magnetic Anomaly Detection Using Entropy Filter[J]. Measurement Science, 2008, 19(4): 045205.
    [11]
    Sheinker A, Ginzburg B, Salomonski N, et al. Magnetic Anomaly Detection Using High-Order Crossing Method [J]. Transactions on Geoscience, 2012, 50(4): 1095-1103.
    [12]
    Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classi-fication with Deep Convolutional Neural Net-works[C]//NIPS’12: Proceedings of the 27th International Conference on Neural Information Processing Systems. USA: Massachusetts Institute of Technology Press, 2012, 1: 1097-1105.
    [13]
    Yosinski J, Clune J, Bengio Y, et al. How Transferable are Features in Deep Neural Networks[C]//NIPS’14: Proceedings of the 27th International Conference on Neural Information Processing Systems. USA: Massachusetts Institute of Technology Press, 2014, 2: 3320-3328.
    [14]
    Cun Y L, Boser B, Denker J S, et al. Handwritten Digit Recognition with a Back-Propagation Network[C]//Advances in Neural Information Processing Systems. USA: Massachusetts Institute of Technology Press, 1990, 2: 396-404.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(657) PDF Downloads(223) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return