• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
ZHANG Xu, LI Zhi-sheng, QIU Ren-gui, DONG Nan. Effects of Observation Geometry on Accuracy Distribution Characteristic of TDOA Localization System in Deep Sea[J]. Journal of Unmanned Undersea Systems, 2020, 28(2): 139-148. doi: 10.11993/j.issn.2096-3920.2020.02.004
Citation: ZHANG Xu, LI Zhi-sheng, QIU Ren-gui, DONG Nan. Effects of Observation Geometry on Accuracy Distribution Characteristic of TDOA Localization System in Deep Sea[J]. Journal of Unmanned Undersea Systems, 2020, 28(2): 139-148. doi: 10.11993/j.issn.2096-3920.2020.02.004

Effects of Observation Geometry on Accuracy Distribution Characteristic of TDOA Localization System in Deep Sea

doi: 10.11993/j.issn.2096-3920.2020.02.004
  • Received Date: 2019-06-17
  • Rev Recd Date: 2019-07-08
  • Publish Date: 2020-04-30
  • To stably localize an acoustic target in a large area of deep sea, the accuracy and coverage characteristic are required to be evaluated under pre-selected observation geometry condition in the measurement system design. Aiming at this problem, a simulation method was presented for analyzing the distributional characteristics of accuracy in underwater acoustic localization with multiple base stations by time difference of arrival(TDOA). The climatological environment in the center of Northern Pacific was selected as background, and the sound field was calculated by BELLHOP Gaussian ray model. Main errors were randomly superimposed by Monte-Carlo method and propagated to finally estimated locations, such that the distribution of root mean square error(RMSE) was established by grid calculation with large samples under typical geometry condition of 4-receiver, 5-receiver or 6-receiver array. The results indicated that the localization performance using direct waves was clearly different from that using first-seabed-reflected waves, and the former was more accurate while the later was better in coverage. For the localization with direct waves, the accuracy was better in the central area of array than that in the marginal one. For the localization with first-seabed-reflected waves, the accuracy became worse in the area several kilometers around the center of array. In another case, the RMSE showed an asymmetric distribution when one corner station was invalid or the central station shifted, the relatively high accuracy area was confined to the active station number, but the full measurement area failed to be covered. Compared with the existing researches, this research provides an applicable way to evaluate and analyze the influence of observation geometry on accuracy distribution and coverage characteristic.

     

  • loading
  • [1]
    贾云得, 冷树林, 刘万春, 等. 四元被动声敏感阵列定位模型分析和仿真[J]. 兵工学报, 2001, 22(2): 206-209. Jia Yun-de, Leng Shu-lin, Liu Wan-chun, et al. Modeling of Passive Acoustic Sensing with Four-sensor Array for Target Localization[J]. Acta Armamentarii, 2001, 22(2): 206-209.
    [2]
    金磊磊, 马艳. 任意四元阵的定位盲区讨论及误差影响[J]. 探测与控制学报, 2015, 37(2): 90-94.

    Jin Lei-lei, Ma Yan. Discussion on Blind Area and Error Effect of Arbitrary Four-element Array[J]. Journal of Detection & Control, 2015, 37(2): 90-94.
    [3]
    顾晓辉, 王晓鸣. 用双直角三角形阵对声目标定位的研究[J]. 声学技术, 2003, 22(1): 44-48.

    Gu Xiao-hui, Wang Xiao-ming. Location of Acoustic Target with Dual Right-triangles Array[J]. Technical Acoustics, 2003, 22(1): 44-48.
    [4]
    祝龙石, 庄志洪, 张清泰. 利用圆阵实现声目标的全空域被动定位[J]. 声学学报, 1999, 24(2): 204-209.

    Zhu Long-shi, Zhuang Zhi-hong, Zhang Qing-tai. An Omni-directional Passive Locatlization Technology of Acoustic Target with Plane Circular Array[J]. Acta Acustica, 1999, 24(2): 204-209.
    [5]
    王志刚, 陈韶华, 王维. 分布式基阵联合定位算法仿真分析[J]. 水下无人系统学报, 2018, 26(5): 433-438.

    Wang Zhi-gang, Chen Shao-hua, Wang Wei. Simulation Analysis of Joint Localization Algorithm Based on Distributed Arrays[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 433-438.
    [6]
    李韦华, 薛飞, 马锦垠. 时延差双曲面定位方法在鱼雷入水点测量中的应用[J]. 鱼雷技术, 2015, 23(6): 420-422.

    Li Wei-hua, Xue Fei, Ma Jin-yin. Application of Localization Method Based on Time Delay Difference and Hyperboloid to Torpedo Water-entry Point Measurement[J]. Torpedo Technology, 2015, 23(6): 420-422.
    [7]
    Brekhovskikh L M, Lysanov Y P. Fundamentals of Ocean Acoustics[M]. 3rd ed. New York: AIP press, 2003.
    [8]
    杨坤德, 李辉, 段睿. 深海声传播信道和目标被动定位研究现状[J]. 中国科学院院刊, 2019, 34(3): 314-320.

    Yang Kun-de, Li Hui, Duan Rui. Research on Acoustic Propagation and Passive Localization in Deep Water[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3): 314-320.
    [9]
    孙大军, 郑翠娥, 崔宏宇, 等. 水下传感器网络定位技术发展现状及若干前沿问题[J]. 中国科学: 信息科学, 2018, 48(9): 1121-1136.

    Sun Da-jun, Zheng Cui-e, Cui Hong-yu, et al. Developing Status and Some Cutting-Edge Issues of Underwater Sensor Network Localization Technology[J]. Scientia Sinica: Informationis, 2018, 48(9): 1121-1136.
    [10]
    陈连荣, 彭朝晖, 南明星. 高斯射线束方法在深海匹配场定位中的应用[J]. 声学学报, 2013, 38(6): 715-723.

    Chen Lian-rong, Peng Zhao-hui, Nan Ming-xing. The Application of Gaussian Beam Method in Deep Ocean Matched-Field Localization[J]. Acta Acustica, 2013, 38(6): 715-723.
    [11]
    吴俊楠, 周士弘, 张岩. 利用深海海底反射声场特征的水面声源被动测距[J]. 中国科学: 物理学 力学 天文学, 2016, 46(9): 76-82.

    Wu Jun-nan, Zhou Shi-hong, Zhang Yan. Passive Ranging of Surface Source Using Bottom Bounced Sound in Deep Water[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2016, 46(9): 76-82.
    [12]
    张旭. 深海分层介质中的无源声定位时差交会特性[J]. 科学通报, 2019, 64(24): 2523-2536.

    Zhang Xu. Time Difference Intersection Characteristics of Passive Underwater Acoustic Localization in the Stratified Deep Sea[J]. Chinese Science Bulletin, 2019, 64(24): 2523-2536.
    [13]
    Locarnini R A, Mishonov A V, Antonov J I, et al. World Ocean Atlas 2009 Volume 1: Temperature[R]. Washington, D.C.: S. Levitus, Ed., NOAA Atlas NESDIS 68, U.S. Government Print-ing Office, 2010.
    [14]
    Antonov J I, Seidov D, Boyer T P, et al. World Ocean Atlas 2009, 2(Salinity)[R]. NOAA Atlas NESDIS 69. Washington D C: Government Printing Office, 2010.
    [15]
    Porter M B, Bucher H P. Gaussian Beam Tracing for Computing Ocean Acoustic Fields[J]. J. Acoust. Soc. Am, 1987, 82: 1349-1359.
    [16]
    刘利生, 吴斌, 吴正容, 等. 外弹道测量精度分析与评定[M]. 北京: 国防工业出版社, 2010: 123-188.
    [17]
    张旭, 孙翱, 韩旭, 等. 水下垂向运动目标的海底多基站声定位方法及精度分析[J]. 声学学报, 2019, 44(2): 155-169.

    Zhang Xu, Sun Ao, Han Xu, et al. Acoustic Localization Scheme and Accuracy Analysis for Underwater Vertical Motion Target Using Multi-stations in the Seabed[J]. Acta Acustica, 2019, 44(2): 155-169.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(446) PDF Downloads(162) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return