• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
YAN Liang-tao, XIANG Xiao-li. Application of Feature Selection Based on GA-KPCA in Underwater Target Recognition[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 113-117. doi: 10.11993/j.issn.2096-3920.2020.01.016
Citation: YAN Liang-tao, XIANG Xiao-li. Application of Feature Selection Based on GA-KPCA in Underwater Target Recognition[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 113-117. doi: 10.11993/j.issn.2096-3920.2020.01.016

Application of Feature Selection Based on GA-KPCA in Underwater Target Recognition

doi: 10.11993/j.issn.2096-3920.2020.01.016
  • Received Date: 2019-03-13
  • Rev Recd Date: 2019-06-05
  • Publish Date: 2020-02-29
  • The complexity of underwater radiated acoustic field and underwater acoustic channel results in intercoupling of the noise signals received by sonar, modulation distortion, and strong nonlinearity. In this paper, the kernel function is used to map the nonlinear data of the original feature space to the high-dimensional feature space; the principal compo-nents analysis(PCA) method is used to extract the features from the high-dimensional feature space, and the genetic algorithm(GA) is used to optimize the kernel parameters, thus an underwater target feature selection method based on GA-kernel principal components analysis(KPCA) is established. Actual sample data validation shows that, to a certain extent, this method compensates the insufficiency of the traditional linear PCA method in dealing with nonlinear data, and it has higher recognition accuracy.

     

  • loading
  • [1]
    郭戈, 王兴凯, 徐慧朴. 基于声呐图像的水下目标检测、识别与跟踪研究综述[J]. 控制与决策, 2018, 33(5): 906-922.

    Guo Ge, Wang Xing-kai, Xu Hui-pu. Review on Underw- ater Target Detection, Recognition and Tracking Based on Sonar Image[J]. Control and Decision, 2018, 33(5): 906-922.
    [2]
    王用, 张杰. 基于数据统计的雷达目标类型识别问题研究[J]. 信息系统工程, 2018(5): 19-19.
    [3]
    宋达. 基于深度学习的水下目标识别方法研究[D]. 成都: 电子科技大学, 2018.
    [4]
    胡光波, 梁红, 徐骞. 舰船辐射噪声混沌特征提取方法研究[J]. 计算机仿真, 2011, 28(2): 22-24, 34.

    Hu Guang-bo, Liang Hong, Xu Qian. Research on Chaotic Feature Extraction of Ship Radiated Noise[J]. Computer Simulation, 2011, 28(2): 22-24, 34.
    [5]
    Schölkopf B. Kernel PCA and De-noising in Feature Spaces[J]. Advances in Neural Information Processing Systems, 1999, 11: 536-542.
    [6]
    耿振余, 陈治湘, 等. 软计算方法及其军事应用[M]. 北京: 国防工业出版社, 2015.
    [7]
    李虹, 徐小力, 吴国新, 等. 基于MFCC的语音情感特征提取研究[J]. 电子测量与仪器学报, 2017, 31(3): 448-453.

    Li Hong, Xu Xiao-li, Wu Guo-xin, et al. Research on Speech Emotion Feature Extraction Based on MFCC[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(3): 448-453
    [8]
    李芳. 深入浅出数据分析[M]. 北京: 电子工业出版社, 2012.
    [9]
    武优西, 郭磊, 柴欣, 等. 基于优化算法的核函数参数选择的研究[J]. 计算机应用与软件, 2010, 27(1): 137-140.

    Wu You-xi, Guo Lei, Chai Xin, et al. On Parameter Selection of Kernel Function Based on Optimization Algorithm[J]. Computer Applications and Software, 2010, 27(1): 137-140.
    [10]
    Kung S Y. Kernel Methods and Machine Learning[M]. Cambridge: Cambridge University Press, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(448) PDF Downloads(180) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return