• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
LI Xiao-gang, WANG Hong-du, LI Ming. Nonlinear PD Controller Design for Autonomous Undersea Vehicle-Manipulator System[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 024-32. doi: 10.11993/j.issn.2096-3920.2020.01.004
Citation: LI Xiao-gang, WANG Hong-du, LI Ming. Nonlinear PD Controller Design for Autonomous Undersea Vehicle-Manipulator System[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 024-32. doi: 10.11993/j.issn.2096-3920.2020.01.004

Nonlinear PD Controller Design for Autonomous Undersea Vehicle-Manipulator System

doi: 10.11993/j.issn.2096-3920.2020.01.004
  • Received Date: 2019-05-16
  • Rev Recd Date: 2019-06-05
  • Publish Date: 2020-02-29
  • For dealing with the nonlinearity, strong coupling and complexity of the working environment of autonomous undersea vehicle-manipulator system(AUVMS), a linear extended state observer(LESO)-based control scheme is designed, in which an AUV with two-link manipulator is divided into 5 subsystems. In each subsystem, external disturbances(such as ocean current, surge and vortex) and internal uncertainties(imprecise modeling, coupling effect and measurement error) are lumped as total disturbances, and LESO and linear feedback control law are designed for estimation and compensation, respectively. The convergence of LESO and the dynamics of estimation error are analyzed. Considering that the power and torque generated by the power device of undersea vehicle are limited, the upper limit of the control input should be set according to the physical characteristics of the power device in practical circumstance, however few literatures have studied the saturation control of undersea vehicle with manipulator system. Therefore, a nonlinear proportional-derivative(PD) controller with input saturation limit is designed and its stability is analyzed. The nonlinearity, high coupling and complex disturbance of the AUVMS are dealt with by using the “total disturbance” concept of the LESO, and the input saturation controller is adopted to ensure the industrial applicability of the control scheme. In addition, the effectiveness of the proposed control algorithm is verified by simulation and comparison with traditional proportional-integral-derivative(PID) control and slide mode control.

     

  • loading
  • [1]
    Londhe P S, Santhakumar M, Patre B M, et al. Task Space Control of an Autonomous Underwater Vehicle Manipulator System by Robust Single-Input Fuzzy Logic Control Scheme[J]. IEEE Journal of Oceanic Engineering, 2017, 42(1): 13-28.
    [2]
    Fossen T I. Guidance and Control of Ocean Vehicles[M]. New Jersey: John Wiley& Sons Ltd, 1994.
    [3]
    Tarn T J, Shoults G A, Yang S P. A Dynamic Model of an Underwater Vehicle with a Robotic Manipulator Using Kane’s Method[J]. Autonomous Robots, 1996, 3(2-3): 269-283.
    [4]
    Li X G, Wang H D, Li Ming, et al. Linear Active Disturbance Rejection Controller Design for Underwater Vehicle Manipulators with 2-links[C]//2018 Chinese Automation Congress(CAC) 2018. Xi’an, China: IEEE, 2018: 875-880.
    [5]
    Yoerger D R, Slotine J. Robust Trajectory Control of Underwater Vehicles[J]. IEEE Journal of Oceanic Engineering, 1985, 10(4): 462-470.
    [6]
    Mahesh H, Yuh J, Lakshmi R. A Coordinated Control of an Underwater Vehicle and Robotic Manipulator[J]. Journal of Field Robotics, 1990, 8(3): 339-370.
    [7]
    Londhe P S, Santhakumar M, Patre B M, et al. Robust Task-space Control of an Autonomous Underwater Vehicle-manipulator System by PID-like Fuzzy Control Scheme with Disturbance Estimator[J]. Ocean Engineering, 2017, 139: 1-13.
    [8]
    Dai Y, Yu S. Design of an Indirect Adaptive Controller for the Trajectory Tracking of UVMS[J]. Ocean Engineering, 2018, 151: 234-245.
    [9]
    Yatoh T, Sagara S, Tamura M. Digital Type Disturbance Compensation Control of a Floating Underwater Robot with 2 link Manipulator[J]. Artificial Life and Robotics, 2008, 13(1): 377-381.
    [10]
    Wang Y, Jiang S, Chen B, et al. Trajectory Tracking Control of Underwater Vehicle-Manipulator System Using Discrete Time Delay Estimation[J]. IEEE Access, 2017, 5(99): 7435-7443.
    [11]
    Huang H, Tang Q, Li H, et al. Vehicle-manipulator System Dynamic Modeling and Control for Underwater Autonomous Manipulation[J]. Multibody System Dynamics, 2017, 41(2): 125-147.
    [12]
    Xu B, Pandian S R, Sakagami N, et al. Neuro-fuzzy Control of Underwater Vehicle-manipulator Systems[J]. Journal of the Franklin Institute, 2012, 349(3): 1125-1138.
    [13]
    韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1): 19-23.

    Han Jing-qing. Active Disturbance Rejection Controller and Application[J]. Control and Decision, 1988, 13(1): 19-23.
    [14]
    韩京清. 一类不确定对象的扩张状态观测器[J]. 控制与决策, 1995, 10(1): 85-88.

    Han Jing-qing. Extended State Observer for an Uncertain System[J]. Control and Decision, 1995, 10(1): 85-88.
    [15]
    Han J Q. From PID to Active Disturbance Rejection Control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906.
    [16]
    Feng H, Guo B Z. A New Active Disturbance Rejection Control to Output Feedback Stabilization for a One-Dimensional Anti-Stable Wave Equation with Disturbance[J]. IEEE Transactions on Automatic Control, 2016, 62(8): 3774-3778.
    [17]
    Gao Z. Scaling and Bandwidth-parameterization Based Controller Tuning[C]//American Control Conference, 2003. Proceedings of the 2003. Denver, CO, USA: IEEE, 2003: 4989-4996.
    [18]
    Fischer N, Kan Z, Kamalapurkar R, et al. Saturated RISE Feedback Control for a Class of Second-Order Nonlinear Systems[J]. IEEE Transactions on Automatic Control, 2014, 59(4): 1094-1099.
    [19]
    Bernstein D S, Michel A N. A Chronological Bibliography on Saturating Actuators[J]. Int. j. robust & Nonlinear Control, 2010, 5(5): 375-380.
    [20]
    Sun N, Fang Y, Zhang X. Energy Coupling Output Feedback Control of 4-DOF Underactuated Cranes with Saturated Inputs[J]. Automatica, 2013, 49(5): 1318-1325.
    [21]
    Dixon W E. Adaptive Regulation of Amplitude Limited Robot Manipulators with Uncertain Kinematics and Dynamics[J]. IEEE Transactions on Automatic Control, 2007, 52(3): 488-493.
    [22]
    Donaire A, Perez T. Dynamic Positioning of Marine Craft Using a Port-Hamiltonian Framework[J]. Automatica, 2012, 48(5): 851-856.
    [23]
    Sarhadi P, Noei A R, Khosravi A. Adaptive Integral Feedback Controller for Pitch and Yaw Channels of an AUV with Actuator Saturations[J]. ISA Transactions, 2016, 65: 284-295.
    [24]
    Miao J M, Wang S P, Lei F, et al. Spatial Curvilinear Path Following Control of Underactuated AUV[J]. ISA Transactions, 2017, 67: 107-130.
    [25]
    Mohan S, Kim J. Coordinated Motion Control in Task Space of an Autonomous Underwater Vehicle Manipulator System[J]. Ocean Engineering, 2015, 104: 155-167.
    [26]
    Juan Ignacio Mulero-MartÍnez. Uniform Bounds of the Coriolis/Centripetal Matrix of Serial Robot Manipulators[J]. IEEE Transactions on Robotics, 2007, 23(5): 1083-1089.
    [27]
    Shao S, Gao Z. On the Conditions of Exponential Stability in Active Disturbance Rejection Control Based on Singular Perturbation Analysis[J]. International Journal of Control, 2016, 90(10): 1-21.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(456) PDF Downloads(253) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return