• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
LUO Hai-li, XU Da, CHEN Mo-jiang, HAO Cheng-peng. CFAR Detection of Range-Extended Target in Pareto II Reverberation[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 018-23. doi: 10.11993/j.issn.2096-3920.2020.01.003
Citation: LUO Hai-li, XU Da, CHEN Mo-jiang, HAO Cheng-peng. CFAR Detection of Range-Extended Target in Pareto II Reverberation[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 018-23. doi: 10.11993/j.issn.2096-3920.2020.01.003

CFAR Detection of Range-Extended Target in Pareto II Reverberation

doi: 10.11993/j.issn.2096-3920.2020.01.003
  • Received Date: 2019-05-14
  • Rev Recd Date: 2019-07-16
  • Publish Date: 2020-02-29
  • With the improvement of modern sonar range resolution, the number of effective scatters in each space pro-cessing unit is greatly reduced, the reverberation distribution model is no longer subject to the central limit theorem, and the target echo occupies a continuous number of distance units. If the Gaussian reverberation model and the model of point target are still used in this case, the detection performance of the high-resolution sonar system would be greatly reduced. This paper discusses the detection method for the range-extended target in Pareto II reverberation based on geometric mean-constant false alarm rate(GM-CFAR), and analyzes the detection performances of the binary integrator, the fuzzy algebraic product integrator, and the fuzzy algebraic sum integrator through the Monte-Carlo method. Simulation results show that the three integrators can effectively detect range-extended targets in Pareto II reverberation, and the detection performances of these two fuzzy logic integrators are better than that of the binary integrator. In addition, the fuzzy algebraic sum integrator works better under multiple jamming targets background than the other two integrators. This research may provide a reference for improving the detection performance of high resolution sonar.

     

  • loading
  • [1]
     [1] Farshchian M, Posner F L. The Pareto Distribution for Low Grazing Angle and High Resolution X-band Sea Clutter[C]//IEEE Radar Conference Proceedings. Arlington, Virginia, USA: IEEE, 2010: 789-793.
    [2]
    James M G. Midfrequency Active Sonar Clutter Statistics Segregated by Broad Clutter Types[J]. Journal of the Acoustical Society of America, 2009, 125(4): 2644.
    [3]
    Cour B R L. Statistical Characterization of Active Sonar Reverberation Using Extreme Value Theory[J]. IEEE Journal of Oceanic Engineering, 2004, 29(2): 310-316.
    [4]
    Gelb J M, Heath R E, Tipple G L. Statistics of Distinct Clutter Classes in Midfrequency Active Sonar[J]. IEEE Journal of Oceanic Engineering, 2010, 35(2): 220-229.
    [5]
    Weinberg, G V. Assessing Pareto Fit to High-resolution High-grazing-angle Sea Clutter[J]. Electronics Letters, 2011, 47(8): 516-517.
    [6]
    Weinberg G V. Constant False Alarm Rate Detectors for Pareto Clutter Models[J]. Iet Radar Sonar & Navigation, 2013, 7(2): 153-163.
    [7]
    Zebiri K, Mezache A, Soltani F, et al. Biogeography Based Optimization for Distributed CFAR Detection in Pareto Clutter[C]//2017 International Conference on Electrical and Information Technologies. Rabat, Morocco: IEEE, 2017.
    [8]
    Weinberg G V, Bateman L, Hayden P. Constant False Alarm Rate Detection in Pareto Type II Clutter[J]. Digital Signal Processing, 2017, 68: 192-198.
    [9]
    孟祥伟, 曲东才, 何友. 高斯背景下距离扩展目标的恒虚警率检测[J]. 系统工程与电子技术, 2005, 27(6): 1012-1015.

    Meng Xiang-wei, Qu Dong-cai, He You. CFAR Detection for Range-extended Target in Gaussian Background[J]. Systems Engineering and Electronics, 2005, 27(6): 1012- 1015.
    [10]
    郝程鹏, 蔡龙, 陈模江. 高斯杂波中距离扩展目标的模糊CFAR检测[J]. 系统工程与电子技术, 2010, 32(4): 678-681.

    Hao Cheng-peng, Cai Long, Chen Mo-jiang. Fuzzy CFAR Detection for Range-extended Targets in Gaussian Clutt- er[J]. Systems Engineering and Electronics, 2010, 32 (4): 678-681.
    [11]
    司昌龙, 徐达, 李晓敏. Pearson杂波背景下基于模糊积累的距离扩展目标检测[J]. 弹箭与制导学报, 2011, 31 (4): 204-206.

    Si Chang-long, Xu Da, Li Xiao-min. Range-extended Target Detection Based on Fuzzy Integration Against Pearson Distributed Clutte[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(4): 204-206.
    [12]
    蔡春, 杨军, 秦江敏. Weibull杂波背景下扩展目标的恒虚警率检测[J]. 空军预警学院学报, 2006, 20(2): 111-113.

    Cai Chun, Yang Jun, Qin Jiang-min. CFAR Detection for Range-extended Targets in Weibull Clutter[J]. Journal of Air Force Radar Academy, 2006, 20(2): 111-113.
    [13]
    Gandhi P P, Kassam S A, Gandhi P, et al. Analysis of CFAR Processors in Non-homogenous Background[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 427-445.
    [14]
    Leung S W, Minett J W. The Use of Fuzzy Spaces in Signal Detection[J]. Fuzzy Sets and Systems, 2000, 114(2): 175-184.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(470) PDF Downloads(233) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return