
| Citation: | WU Shang-shang, LI Ge-ge, LAN Shi-quan, YANG Shao-qiong, ZHANG Lian-hong. Present Situation and Prospect of Navigation Technologies for Underwater Glider[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 529-540. doi: 10.11993/j.issn.2096-3920.2019.05.008 |
| [1] |
沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.
Shen Xin-rui, Wang Yan-hui, Yang Shao-qiong, et al. Development of Underwater Gliders: An Overview and Prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 89-106.
|
| [2] |
尹伟伟, 郭士荦. 非卫星水下导航定位技术综述[J]. 舰船电子工程, 2017, 37(3): 8-11.
Yin Wei-wei, Guo Shi-luo. Survey on Non-satellite Underwater Navigation and Positioning Technology[J]. Ship Electronic Engineering, 37(3): 8-11.
|
| [3] |
Yan Z, Peng S, Zhou J, et al. Research on an Improved Dead Reckoning for AUV Navigation[C]//IEEE 2010 Chinese Control and Decision Conference (CCDC). Xuzhou, China: IEEE, 2010.
|
| [4] |
张爱军. 水下潜器组合导航定位及数据融合技术研究[D]. 南京: 南京理工大学, 2009.
|
| [5] |
赵辉. 基于水下航行器导航定位及信息融合技术研究[D]. 南京: 南京理工大学, 2007.
|
| [6] |
张红梅, 赵建虎, 杨鲲, 等. 水下导航定位技术[M]. 武汉: 武汉大学出版社, 2010.
|
| [7] |
Stutters L, Liu H, Tiltman C, et al. Navigation Technologies for Autonomous Underwater Vehicles[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2008, 38(4): 581-589.
|
| [8] |
Paull L, Saeedi S, Seto M, et al. AUV Navigation and Localization: A Review[J]. IEEE Journal of Oceanic Engineering, 2014, 39(1): 131-149.
|
| [9] |
Jalving B, Gade K, Svartveit K, et a1. DVL Velocity Aiding in the HUGIN 1000 Integrated Inertial Navigation System[J]. Modeling, Identification and Control, 2004, 25(4): 223-235.
|
| [10] |
Hegrenæs ?, Ramstad A, Pedersen T, et al. Validation of a New Generation DVL for Underwater Vehicle Navigation[C]//2016 IEEE/OES Autonomous Underwater Vehi-cles(AUV). Richardson, US: IEEE, 2016: 342-348.
|
| [11] |
张磊. 船用捷联式惯性/天文组合导航方法的研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
|
| [12] |
彭富清, 霍立业. 海洋地球物理导航[J]. 地球物理学进展, 2007, 22(3): 759-764.
Peng Fu-qing, Huo Li-ye. Marine Geophysical Navigation. Progress in Geophysics[J]. Progress in Geophysics, 2007, 22(3): 759-764.
|
| [13] |
Fallon M F, Papadopoulos G, Leonard J J, et al. Cooperative AUV Navigation Using a Single Maneuvering Surface Craft[J]. The International Journal of Robotics Rese- arch, 2010, 29(12): 1461-1474.
|
| [14] |
姚剑奇. 水下重力辅助导航定位方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
|
| [15] |
李姗姗. 水下重力辅助惯性导航的理论与方法研究[D]. 郑州: 解放军信息工程大学, 2010.
|
| [16] |
Kalman R E. A New Approach to Linear Filtering and Prediction Problems[J]. Journal of Basic Engineering, 1960, 82(1): 35-45.
|
| [17] |
Chowdhury G, Johnson E N, Magree D, et a1. GPS-denied Indoor and Outdoor Monocular Vision Aided Navigation and Control of Unmanned Aircraft[J]. Journal of Field Robotics, 2013, 30(3): 415-438.
|
| [18] |
Julier S J, Uhlmann J K. Unscented Filtering and Nonlinear Estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401-422.
|
| [19] |
Shabani M, Gholami A, Davari N. Asynchronous Direct Kalman Filtering Approach for Underwater Integrated Navigation System[J]. Nonlinear Dynamics, 2014, 80(1-2): 71-85.
|
| [20] |
Davari N, Gholami A. An Asynchronous Adaptive Direct Kalman Filter Algorithm to Improve Underwater Navigation System Performance[J]. IEEE Sensors Journal, 2017, 17(4): 1061-1068.
|
| [21] |
Noureldin A, Karamat T B, Eberts M D, et al. Performance Enhancement of MEMS-Based INS/GPS Integration for Low-Cost Navigation Applications[J]. IEEE Transactions on Vehicular Technology, 2009, 58(3): 1077- 1096.
|
| [22] |
Wan E A, Van Der Merwe R. The Unscented Kalman Filter for Nonlinear Estimation[C]//Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium(Cat. No. 00EX373). Lake Louise, Alberta, Canada: IEEE, 2000: 153-158.
|
| [23] |
Huang H Q, Chen X Y, Liu H, et al. Study on the Design and Algorithm of INS/MCP/DR Integrated Navigation Method for Underwater Glider[C]//2012 Third International Confer-ence on Digital Manufacturing & Automation. NW Wash-ington, DC: IEEE, 2012: 843-846.
|
| [24] |
Sherman J, Davis R E, Owens W B, et al. The Autonomous Underwater Glider “Spray”[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 437-446.
|
| [25] |
Eriksen C C, Osse T J, Light R D, et al. Seaglider: A Long-Range Autonomous Underwater Vehicle for Ocean-ographic Research[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 424-436.
|
| [26] |
Merckelbach L M, Briggs R D, Smeed D A, et al. Current Measurements from Autonomous Underwater Gliders[C]// 2008 IEEE/OES 9th Working Conference on Current Measurement Technology. Charleston, SC, USA: IEEE, 2008: 61-67.
|
| [27] |
Webb D C, Simonetti P J, Jones C P. SLOCUM: An Underwater Glider Propelled by Environmental Energy[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 447- 452.
|
| [28] |
Wikle C K. Atmospheric Modeling, Data Assimilation, and Predictability[J]. Technometrics, 2002, 47(4): 521- 521.
|
| [29] |
Szwaykowska K, Zhang F. Trend and Bounds for Error Growth in Controlled Lagrangian Particle Tracking[J]. IEEE Journal of Oceanic Engineering, 2013, 39(1): 10-25.
|
| [30] |
Hart P E, Nilsson N J, Raphael B. Correction to “A Formal Basis for the Heuristic Determination of Minimum Cost Paths”[J]. ACM SIGART Bulletin, 1972, 37(37): 28-29.
|
| [31] |
Fernández-Perdomo E, Cabrera-Gámez J, Hernández-Sosa D, et al. Path Planning for Gliders Using Regional Ocean Models: Application of Pinzón Path Planner with the ESEOAT Model and the RU27 Trans-Atlantic Flight Data[C]//Oceans’10 IEEE. Sydney, Australia: IEEE, 2010: 1-10.
|
| [32] |
Chang D, Zhang F, Edwards C R. Real-Time Guidance of Underwater Gliders Assisted by Predictive Ocean Models[J]. Journal of Atmospheric & Oceanic Technology, 2015, 32(3): 562-578.
|
| [33] |
Chang D, Liang X, Wu W, et al. Real-time Modeling of Ocean Currents for Navigating Underwater Glider Sensing Networks[M]. Berlin, Heidelberg: Springer, 2014: 61-75.
|
| [34] |
Huang H, Chen X, Zhang B, et al. High Accuracy Navigation Information Estimation for Inertial System Using the Multi-model EKF Fusing Adams Explicit Formula Applied to Underwater Gliders[J]. ISA transactions, 2017, 66: 414-424.
|
| [35] |
Huang H, Zhou J, Zhang J, et al. Attitude Estimation Fusing Quasi-Newton and Cubature Kalman Filtering for Inertial Navigation System Aided with Magnetic Sensors[J]. IEEE Access, 2018, 6: 28755-28767.
|
| [36] |
Jenkins S A, Humphreys D E, Sherman J, et al. Underwater glider system study[R]. Scripps Institution of Oceanography Technical Report, 2003.
|
| [37] |
Kim J, Park Y, Lee S, et al. Underwater Glider Navigation Error Compensation Using Sea Current Data[J]. IFAC Proceedings Volumes, 2014, 47(3): 9661-9666.
|
| [38] |
Durbin J, Koopman S J. Time Series Analysis of Non Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives[J]. Journal of the Royal Statistical Society: Series B(Statistical Methodology), 2000, 62(1): 33-34.
|
| [39] |
Boyd S, El Ghaoui L, Feron E, et al. Linear Matrix Inequalities in System and Control Theory[M]. Pennsylvania, PA, USA: Society for Industrial and Applied Mathematics, 1994.
|
| [40] |
Chung D, Park C G, Lee J G. Observability Analysis of Strapdown Inertial Navigation System Using Lyapunov Transfomation[C]//35th IEEE Conference on Decision and Control. Kobe, Japan: IEEE, 1996: 23-28.
|
| [41] |
Wang L X, Guo L. Multi-objective Control in Integrated Navigation System Based on LMI[J]. Acta Aeronautical et Astronautica Sinica, 2008, 29: 102-106.
|
| [42] |
Yu M J, Lee S W. A Robust Extended Filter Design for SDINS In-flight Alignment[J]. International Journal of Control, Automation, and Systems, 2003, 1(4): 520-526.
|
| [43] |
Cao S, Guo L. Multi-objective Robust Initial Alignment Algorithm for Inertial Navigation System with Multiple Disturbances[J]. Aerospace Science and Technology, 2012, 21(1): 1-6.
|
| [44] |
Techy L, Morganseny K A, Wolsey C A. Long-baseline Acoustic Localization of the Seaglider Underwater Glider[C]//2011 American Control Conference. California, USA: IEEE, 2011: 3990-3995.
|
| [45] |
Van Uffelen L J, Howe B M, Nosal E M, et al. Long-range Glider Localization Using Broadband Acoustic Signals and a Linearized Model of Glider Motion[C]//2013 OCEANS. San Diego. US: IEEE, 2013: 1-4.
|
| [46] |
Van Uffelen L J, Nosal E M, Howe B M, et al. Estimating Uncertainty in Subsurface Glider Position Using Transmissions from Fixed Acoustic Tomography Sources[J]. The Journal of the Acoustical Society of America, 2013, 134(4): 3260-3271.
|
| [47] |
Van Uffelen L J, Howe B, Nosal E M, et al. Acoustic Localization of Seagliders in the Philippine Sea Using Broadband Transmissions from Moored Acoustic Sources[J]. The Journal of the Acoustical Society of America, 2013, 134(5): 3983.
|
| [48] |
Sun J, Yu J, Zhang A, et al. Navigation Positioning Algorithm for Underwater Gliders in Three-dimensional Space[C]//2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). Shenyang, China: IEEE, 2015: 1269- 1274.
|
| [49] |
Woithe H C, Boehm D, Kremer U. Improving Slocum Glider Dead Reckoning Using a Doppler Velocity Log[C] //OCEANS’11. Kona: IEEE, 2011: 1-5.
|
| [50] |
Green D. Underwater Modem-based Navigation Aids[C]// 2010 7th International Symposium on Wireless Communication Systems. York, United Kingdom: IEEE, 2010: 606-610.
|
| [51] |
Dinc M, Hajiyev C. Integration of Navigation Systems for Autonomous Underwater Vehicles[J]. Journal of Marine Engineering & Technology, 2015, 14(1): 32-43.
|
| [52] |
Larsen M B. High Performance Doppler-inertial Navigation-experimental Results[C]//OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No. 00CH37158). Providence, RI, USA: IEEE, 2000: 1449- 1456.
|
| [53] |
Jalving B, Gade K, Svartveit K, et a1. DVL Velocity Aiding in the HUGIN 1000 Integrated Inertial Navigation System[J]. Modeling, Identification and Control, 2004, 25(4): 223-235.
|
| [54] |
季龙. 水下滑翔机定位导航系统及实验研究[D]. 杭州: 浙江大学, 2006.
|
| [55] |
黄海洋. 水下滑翔机GPS/SINS组合导航系统研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
|
| [56] |
李辉. 水下滑翔机的系统设计与导航方法研究[D]. 青岛: 中国海洋大学, 2014.
|
| [57] |
Paley D A. Cooperative Control of Collective Motion for Ocean Sampling with Autonomous Vehicles[M]. Princeton: Princeton University, 2007.
|
| [58] |
Tang K H, Jiang M M, Weng J. Design of SINS/Phased Array DVL Integrated Navigation System for Underwater Vehicle Based on Adaptive Filtering[J]. Journal of Chinese Inertial Technology, 2013, 21(1): 65-70.
|
| [59] |
Huang H, Chen X, Lv C, et al. A Novel Hybrid Algorithm of Split-radix Fast Fourier Transform and Unscented Kalman Filter for Navigation Information Estimation[C]//2015 IEEE Metrology for Aerospace (Metro Aerospace). Florence, Italy: IEEE, 2015: 93-97.
|
| [60] |
Bouguezel S, Ahmad M O, Swamy M N S. Arithmetic Complexity of the Split-radix FFT Algorithms[C]//2005 IEEE International Conference on Acoustics, Speech, and Signal Processing. Philadelphia, Pennsylvania, USA: IEEE, 2005.
|
| [61] |
周吉雄. 自主式水下航行器导航算法研究[D]. 哈尔滨:哈尔滨工程大学, 2018.
|
| [62] |
吕志刚. 基于 SINS/DVL/GPS 的 AUV 组合导航标定方法的研究及其误差分析[J]. 舰船电子工程, 2018, 38 (6): 33-36.
Lü Zhi-gang. Research on SINS/DVL/GPS Integrated Navigation System Calibration Method and the Error Analysis of AUV[J]. Ship Electronic Engineering, 2018, 38(6): 33-36.
|
| [63] |
Xu X S, Pan Y F, Zou H J. SINS/DVL Integrated Navigation System Based on Adaptive Filtering[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2015, 43(3): 95-99.
|
| [64] |
Polvani D. Magnetic Guidance of Autonomous Vehicles (part2) [C]//1987 5th International Symposium on Un-manned Untethered Submersible Technology. Shanghai, Chi-na: IEEE, 1987: 257-264.
|
| [65] |
Davis C. GPS-like Navigation Underground[C]//IEEE/ ION Position, Location and Navigation Symposium. Tianjin, China: IEEE, 2010: 1108-1111.
|
| [66] |
Kato N, Shigetomi T. Underwater Navigation for Long-range Autonomous Underwater Vehicles Using Geomagnetic and Bathymetric Information[J]. Advanced Robotics, 2009, 23(7-8): 787-803.
|
| [67] |
蔡兆云, 魏海平, 任志新. 水下地磁导航技术研究综述[J]. 尖端科技, 2007(3): 28-30.
|
| [68] |
余乐. 水下地磁导航航迹规划算法研究[D]. 南京: 东南大学, 2017.
|
| [69] |
Lin Y. Hausdorff-based RC and IESIL Combined Positioning Algorithm for Underwater Geomagnetic Navigation[J]. EURASIP Journal on Advances in Signal Processing, 2010(1): 1-12.
|
| [70] |
胡小平, 吴美平, 穆华, 等. 水下地磁导航技术[M]. 北京: 国防工业大学出版社, 2013.
|
| [71] |
穆华, 吴志添, 吴美平. 水下地磁/惯性组合导航试验分析[J]. 中国惯性技术学报, 2013, 21(3): 386-391.
Mu Hua, Wu Zhi-tian, Wu Mei-ping. Experimental Analysis of Underwater Geomagnetic Field/inertial Integrated Navigation[J]. Journal of Chinese Inertial Technology, 2013, 21(3): 386-391.
|
| [72] |
Wu Z, Hu X, Wu M, et a1. An Experimental Evaluation of Autonomous Underwater Vehicle Localization on Geo-magnetic Map[J]. Applied Physics Letters, 2013, 103(10): 104102(1)-104102(4).
|
| [73] |
刘明雍, 李红, 刘坤, 等. 地磁异常影响下的AUV仿生导航方法研究[J]. 西北工业大学学报, 2015, 33(4): 627- 632.
Liu Ming-yong, Li Hong, Liu Kun, et al. Navigation Method of Autonomous Underwater Vehicle with Disturbance Due to Geomagnetic Anomaly Considered[J]. Journal of Northwestern Polytechnical University, 2015, 33 (4): 627-632.
|
| [74] |
Stuntz A, Liebel D, Smith R N. Enabling Persistent Autonomy for Underwater Gliders Through Terrain Based Navigation[C]//OCEANS 2015, Genova, Italy: IEEE, 2015.
|
| [75] |
Kato N, Shigetomi T. Underwater Navigation for Long-range Autonomous Underwater Vehicles Using Geomag- netic and Bathymetric Information[J]. Advanced Robotics, 2009, 23(7-8): 787-803.
|
| [76] |
Rossby T, Dorson D, Fontaine J. The RAFOS System[J]. Journal of Atmospheric and Oceanic Technology, 1986, 3 (4): 672-679.
|
| [77] |
Jones C, Allsup B, DeCollibus C. Slocum Glider: Expanding Our Understanding of the Oceans[C]//2014 Oceans. St. John’s: IEEE, 2014: 1-10.
|
| [78] |
Deffenbaugh M, Schmidt H, Bellingham J G. Acoustic Navigation for Arctic Under-ice AUV Missions[C]//OCEANS’93. Victoria, BC, Canada: IEEE, 1993: I204-I209.
|
| [79] |
Kukulya A, Plueddemann A, Austin T, et al. Under-ice Oper-ations with a REMUS-100 AUV in the Arctic[C]//2010 IEEE/ OES Autonomous Underwater Vehicles. Monterey, California, USA: IEEE, 2010: 1-8.
|
| [80] |
Jakuba M V, Roman C N, Singh H, et al. Long-Baseline Acoustic Navigation for Under-Ice Autonomous Underwater Vehicle Operations[J]. Journal of Field Robotics, 2008, 25(11-12): 861-879.
|
| [81] |
Hegrenæs ?, Gade K, Hagen O K, et al. Underwater Transponder Positioning and Navigation of Autonomous Underwater Vehicles[C]//OCEANS 2009. Biloxi, MS, USA: IEEE, 2009: 1-7.
|
| [82] |
Kaminski C, Crees T, Ferguson J, et al. 12 Days Under Ice—an Historic AUV Deployment in the Canadian High Arctic[C]//2010 IEEE/OES Autonomous Underwater Vehicles. Monterey, CA, USA: IEEE, 2010: 1-11.
|
| [83] |
Doble M J, Wadhamsi P, Forrest A L, et al. Experiences from Two-years’ Through-ice AUV Deployments in the High Arctic[C]//2008 IEEE/OES Autonomous Underwater Vehicles. Woods Hole, MA, USA: IEEE, 2008: 1-7.
|
| [84] |
Walls J M, Eustice R M. An Origin State Method for Communication Constrained Cooperative Localization with Robustness to Packet Loss[J]. The International Journal of Robotics Research, 2014, 33(9): 1191-1208.
|
| [85] |
Bahr A, Walter M R, Leonard J J. Consistent Cooperative Localization[C]//2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009: 3415-3422.
|
| [86] |
Vaganay J, Leonard J J, Curcio J A, et al. Experimental Validation of the Moving Long Base-line Navigation Concept[C]//2004 IEEE/OES Autonomous Underwater Vehicles(IEEE Cat. No. 04CH37578). Sebasco, ME, USA, USA: IEEE, 2004: 59-65.
|
| [87] |
Webster S E, Freitag L E, Lee C M, et al. Towards Real-time Underice Acoustic Navigation at Mesoscale Ranges[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA: IEEE, 2015: 537- 544.
|
| [88] |
Claus B, Bachmayer R. Towards Navigation of Underwater Gliders in Seasonal Sea Ice[C]//2014 Oceans. St. John’s: IEEE, 2014: 1-8.
|
| [89] |
Claus B, Bachmayer R. Terrain Aided Navigation for an Underwater Glider[J]. Journal of Field Robotics, 2015, 32(7): 935-951.
|
| [90] |
Claus B, Bachmayer R. Towards Online Terrain Aided Navigation of Underwater Gliders[C]//2014 IEEE/OES Autonomous Underwater Vehicles (AUV). Oxford, MS, USA: IEEE, 2014: 1-5.
|