• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
ZHANG Ning, WANG Peng, SONG Bao-wei. Shape Optimization for Blended-Wing-Body Underwater Glider Using Improved Kriging-HDMR[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 496-502. doi: 10.11993/j.issn.2096-3920.2019.05.004
Citation: ZHANG Ning, WANG Peng, SONG Bao-wei. Shape Optimization for Blended-Wing-Body Underwater Glider Using Improved Kriging-HDMR[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 496-502. doi: 10.11993/j.issn.2096-3920.2019.05.004

Shape Optimization for Blended-Wing-Body Underwater Glider Using Improved Kriging-HDMR

doi: 10.11993/j.issn.2096-3920.2019.05.004
  • Received Date: 2019-05-15
  • Rev Recd Date: 2019-06-03
  • Publish Date: 2019-10-31
  • To make the shape of blended-wing-body underwater glider(BWBUG) have better lift and drag characteristics, an advanced surrogate-based optimization method using a Kriging-high dimensional model representation(Kriging-HDMR) is presented. In this algorithm, expected improvement(EI) criterion and moving cut point are employed during optimization process to improve the accuracy and efficiency of the optimization. Class-shape function transformation(CST) method is used to establish a parameterization model for the shape of BWBUG. Then, in order to maximize the lift-to-drag ratio, the improved Kriging-HDMR method is used to optimize the shape of BWBUG. The results show that the lift-to-drag ratio of the BWBUG shape is improved by 3.135 6% with the proposed HDMR optimization method.

     

  • loading
  • [1]
    谷海涛, 林扬, 胡志强, 等. 基于代理模型的水下滑翔机机翼设计优化方法[J]. 机械工程学报, 2009, 45(12): 7-14.

    Gu Hai-tao, Lin Yang, Hu Zhi-qiang, et al. Surrogate Models Based Optimization Methods for the Design of Underwater Glider Wing[J]. Journal of Mechanical Engineering, 2009, 45(12): 7-14.
    [2]
    Sun C, Song B, Wang P. Parametric Geometric Model and Shape Optimization of an Underwater Glider with Blended-wing-body[J]. International Journal of Naval Architecture & Ocean Engineering, 2015, 7(6): 995- 1006.
    [3]
    Box G E P, Draper N R. Empirical Model-building and Response Surfaces[M]. Hoboken, NJ: John Wiley & Sons, 1987.
    [4]
    Fang H, Horstemeyer M F. Global Response Approximation with Radial Basis Functions[J]. Engineering Opti- mization, 2006, 38(4): 407-424.
    [5]
    Cressie N. Spatial Prediction and Ordinary Kriging[J]. Mathematical Geology, 1988, 20(4): 405-421.
    [6]
    Smola A J, Schölkopf B. A Tutorial on Support Vector Regression[J]. Statistics and Computing, 2004, 14(3): 199- 222.
    [7]
    Shan S, Wang G G. Survey of Modeling and Optimization Strategies to Solve High-dimensional Design Problems with Computationally-expensive Black-box Functions[J]. Structural and Multidisciplinary Optimization, 2010, 41(2): 219-241.
    [8]
    Shan S, Wang G G. Turning Black-box Functions into White Functions[J]. Journal of Mechanical Design, 2011, 133(3): 031003-1-031003-10.
    [9]
    Cai X, Qiu H, Gao L, et al. An Enhanced RBF-HDMR Integrated with an Adaptive Sampling Method for Approximating High Dimensional Problems in Engineering design[J]. Structural and Multidisciplinary Optimization, 2016, 53(6): 1209-1229.
    [10]
    Chen L, Wang H, Ye F, et al. Comparative Study of HDMRs and Other Popular Metamodeling Techniques for High Dimensional Problems[J]. Structural and Multidisciplinary Optimization, 2019, 59(1): 21-42.
    [11]
    汤龙, 李光耀, 王琥. Kriging-HDMR非线性近似模型方法[J]. 力学学报, 2011, 43(4): 780-784.

    Tang Long, Li Guang-yao, Wang Hu. Kriging-HDMR Metamodeling Technique for Nonlinear Problems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(4): 780-784.
    [12]
    Chen L, Li E, Wang H. Time-based Reflow Soldering Optimization by Using Adaptive Kriging-HDMR method[J]. Soldering & Surface Mount Technology, 2016, 28(2): 101-113.
    [13]
    Wu X, Peng X, Chen W, et al. A Developed Surrogate-Based Optimization Framework Combining HDMR-Based Modeling Technique and TLBO Algorithm for High-dimensional Engineering Problems[J]. Structural and Multidisciplinary Optimization, 2019, 60(2): 663-680.
    [14]
    Jones D R, Schonlau M, Welch W J. Efficient Global Optimization of Expensive Black-box Functions[J]. Journal of Global optimization, 1998, 13(4): 455-492.
    [15]
    Mirjalili S, Mirjalili S M, Lewis A. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(534) PDF Downloads(254) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return