• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
SUN Xiu-jun, WANG Lei, SANG Hong-qiang. Dynamic Modeling and Simulation of Underwater Glider Petrel-II 200[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 480-487. doi: 10.11993/j.issn.2096-3920.2019.05.002
Citation: SUN Xiu-jun, WANG Lei, SANG Hong-qiang. Dynamic Modeling and Simulation of Underwater Glider Petrel-II 200[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 480-487. doi: 10.11993/j.issn.2096-3920.2019.05.002

Dynamic Modeling and Simulation of Underwater Glider Petrel-II 200

doi: 10.11993/j.issn.2096-3920.2019.05.002
  • Received Date: 2018-10-25
  • Rev Recd Date: 2018-12-10
  • Publish Date: 2019-10-31
  • In China, the researches on dynamic behavior of underwater glider mostly focuses on deep-sea type and horizontally rolling mechanism, but less on shallow-sea type and tail rudder steering type. This paper takes shallow-sea underwater glider Petrel-II 200 as a model to conduct dynamic modeling and motion simulation, and adds some disturbing factors such as ocean current for the purpose of providing reference for motion form of shallow-sea underwater glider. According to the relative motion relationship of each mass in the Petrel-II 200 three-dimensional model, the centroid is simplified to a multi-rigid body system composed of multiple particles, and the relationship between the centroid and the particle is constructed. Based on the theorems of momentum and momentum moment, the dynamics of Petrel-II 200 is analyzed. The gravity, driving buoyancy and hydrodynamics of the underwater glider are transformed into body coordinate system. The complete dynamic equation is deduced, and the expressions of lift-to-drag ratio and radius of rotation are defined. By choosing the physical and hydrodynamic parameters of the underwater glider, simulation experiments of typical motions, such as sawtooth and spiral motions, are carried out. The simulation results validate the accuracy and reliability of the dynamic model, and provide a good simulation platform for the following underwater glider Petrel-II 200 motion performance optimization and control algorithm design.

     

  • loading
  • [1]
    Rudnick D L, Davis R E, Eriksen C C, et al. Underwater Gliders for Ocean Research[J]. Marine Technology Society Journal, 2004, 38(2): 73-84.
    [2]
    Leonard N E. Control Synthesis and Adaptation for an Underactuated Autonomous Underwater vehicle[J]. IEEE Journal of Oceanic Engineering, 1994, 20(3): 211-220.
    [3]
    Leonard N E. Periodic Forcing, Dynamics and Control of Underactuated Spacecraft and Underwater Vehicles[C]// Decision and Control, 1995. New Orleans, LA, USA: IEEE, 1996: 3980-3985.
    [4]
    俞建成, 张奇峰, 吴利红, 等. 水下滑翔机器人运动调节机构设计与运动性能分析[J]. 机器人, 2005, 27(5): 390-395.

    Yu Jian-cheng, Zhang Qi-feng, Wu Li-hong, et al. Movement Mechanism Design and Motion Performance Analysis of an Underwater Glider[J]. Robot, 2005, 27(5): 390-395.
    [5]
    王长涛, 俞建成, 吴利红, 等. 水下滑翔机器人运动机理仿真与实验[J]. 海洋工程, 2007, 25(1): 64-69.

    Wang Chang-tao, Yu Jian-cheng, Wu Li-hong, et al. Reseach on Movement Mechanism Simulation and Experiment of Underwater glider[J]. Ocean Engineering, 2007, 25(1): 64-69.
    [6]
    Zhang S, Yu J, Zhang A, et al. Spiraling Motion of Underwater Gliders: Modeling, Analysis, and Experimental Results[J]. Ocean Engineering, 2013, 60(3): 1-13.
    [7]
    王树新, 刘方, 邵帅, 等. 混合驱动水下滑翔机动力学建模与海试研究[J]. 机械工程学报, 2014, 50(2): 19-27.

    Wang Shu-xin, Liu Fang, Shao Shuai, et al. Dynamic Modeling of Hybrid Underwater Glider Based on the Theory of Differential Geometry and Sea Trails[J]. Journal of Mechanical Engineering, 2014, 50(2): 19-27.
    [8]
    武建国. 混合驱动水下滑翔机系统设计与性能分析[D]. 天津: 天津大学, 2010.
    [9]
    孙秀军. 混合驱动水下滑翔机动力学建模及运动控制研究[D]. 天津: 天津大学, 2011.
    [10]
    Wang S X, Sun X J, Wu J G, et al. Motion Characteristic Analysis of a Hybrid-driven Underwater Glider[C]//Oceans. Sydney, NSW, Australia: IEEE, 2010: 1-9.
    [11]
    Wang S X, Sun X J, Wang Y H, et al. Dynamic Modeling and Motion Aimulation for a Winged Hybriddriven Underwater Glider[J]. China Ocean Engineering, 2011, 25(1): 97-112.
    [12]
    Niu W D, Wang S X, Wang Y H, et al. Stability Analysis of Hybrid-driven Underwater Glider[J]. China Ocean Engineering, 2017, 31(5): 528-538.
    [13]
    王延辉. 水下滑翔机动力学行为与鲁棒控制策略研究[D]. 天津: 天津大学, 2007.
    [14]
    温浩然, 魏纳新, 刘飞. 水下滑翔机的研究现状与面临的挑战[J]. 船舶工程, 2015(1): 1-6.

    Wen Hao-ran, Wei Na-xin, Liu Fei. Research of Current Situation and Future Challenges of Underwater Glider[J]. Ship Engineering, 2015(1): 1-6.
    [15]
    李天森. 鱼雷操纵性[M]. 第2版. 北京: 国防工业出版社, 2007.
    [16]
    Graver J G. Underwater Gliders: Dynamics, Control and Design[D]. Princeton: Princeton University, 2005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(919) PDF Downloads(425) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return