• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
QIAN Hong-bao, LU Xiao-ting. Technical Development of Underwater Glider in China: Suggestions and Thoughts[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 474-479. doi: 10.11993/j.issn.2096-3920.2019.05.001
Citation: QIAN Hong-bao, LU Xiao-ting. Technical Development of Underwater Glider in China: Suggestions and Thoughts[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 474-479. doi: 10.11993/j.issn.2096-3920.2019.05.001

Technical Development of Underwater Glider in China: Suggestions and Thoughts

doi: 10.11993/j.issn.2096-3920.2019.05.001
  • Received Date: 2019-03-30
  • Rev Recd Date: 2019-09-20
  • Publish Date: 2019-10-31
  • This paper briefly summarises the development status of underwater glider technology at home and abroad, and reviews the development process of the underwater glider(UG) in China. The arrangement and deployment of the National Science and Technology Plan for the marine instruments and equipment represented by underwater gliders, the technological progress achieved, and the primary experience and practices of them are also introduced. Finally, comments and suggestions for the next development of underwater glider technology are put forward from three aspects: single platform technology, collaborative networking and application research. They mainly include: firstly, some key technologies such as low power design, optimal path planning and control strategy algorithm, multi-parameter acquisition and carrying capacity, data quality standards and information security transmission should be further strengthened to speed up the upgrade, improvement and optimization of UG monomer technology; then the synchronised observation technology based on the multi-underwater gliders formation cooperative networking should be strengthened to improve their overall operation efficiency, observation and detection effect; and lastly, the observation function expansion of UG and their application of marine science should be strengthened to make the ocean more transparent.

     

  • loading
  • [1]
    Cui W C, Fu S X, Hu Z Q, et al. Encyclopedia of Ocean Engineering: Glider[M]. Singapore: Springer Singapore, 2019: 1-12.
    [2]
    Rudnick, Daniel L. Ocean Research Enabled by Underwater Gliders[J]. Annual Review of Marine Science, 2016, 8: 519-541.
    [3]
    Li S F, Wang S X, Zhang F M, et al. Constructing the Three-dimensional Structure of an Anticyclonic Eddy in the South China Sea Using Multiple Underwater Gliders [J/OL]. Journal of Atmospheric and Oceanic Technology. https://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-19-0006.1, 2019-09-23.
    [4]
    Qiu C H, Mao H B, Liu H L, et al. Deformation of a Warm Eddy in the Northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2019, 124(8): 5551-5564.
    [5]
    Viglione G A, Thompson A F, Flexas M M, et al. Abrupt Transitions in Submesoscale Structure in Southern Drake Passage: Glider Observations and Model Results[J]. Journal of Physical Oceanography, 2018, 48(9): 2011- 2027.
    [6]
    Ananda P, Simon R, Antonio O, et al. A Multiplatform Experiment to Unravel Meso-and Submesoscale Processes in an Intense Front(AlborEx)[J]. Frontiers in Marine Science, 2017, 4: 1-16.
    [7]
    Andrew F, Thompson A L, Christian B, et al. Open-Ocean Submesoscale Motions: A Full Seasonal Cycle of Mixed Layer Instabilities from Gliders[J]. Journal of Physical Oceanography, 2016, 46(4): 1285-1307.
    [8]
    沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.

    Shen Xin-rui, Wang Yan-hui, Yang Shao-qiong, et al. Development of Underwater Gliders: An Overview and Prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 89-106.
    [9]
    Glenn S, Schofield O, Kohut J, et al. The Trans-Atlantic Slocum Glider Expeditions: A Catalyst for Undergraduate Participation in Ocean Science and Technology[J]. MAR Marine Technology Society Journal, 2011, 45(1): 52-67.
    [10]
    Yu Jian-cheng, Jin Wen-ming, Tan Zhi-duo, et al. Development and Experiments of the Sea-Wing7000 Underwater Glider[C]//OCEANS 2017 MTS/IEEE Anchorage. New York: IEEE, 2017: 1-7.
    [11]
    Li H Z, Wang Y Hi, Wang S X. Underwater Glider Pet-rel-X—Glider rated to 10,000 m for Hadal Zone Research [J]. Sea Technology, 2019, 60(4): 18-22.
    [12]
    Wang S X, Li H Z, Wang Y H, et al. Dynamic Modeling and Motion Analysis for a Dual-Buoyancy-Driven Full Ocean Depth Glider[J]. Ocean Engineering, 2019, 187: 106163.
    [13]
    Yang M, Wang Y H, Wang S X, et al. Motion Parameter Optimization for Gliding Strategy Analysis of Underwater Gliders[J]. Ocean Engineering, 2019, 191: 106502.
    [14]
    Qiu C H, Mao H B, Wang Y H, et al. An Irregularly Shaped Warm Eddy Observed by Chinese Underwater Gliders[J]. Journal of Oceanography, 2019, 75(2): 139-148.
    [15]
    Ma W, Wang Y H, Yang S Q, et al. Observation of Internal Solitary Waves Using an Underwater Glider in the North-ern South China Sea[J]. Journal of Coastal Research, 2018, 345(5): 1188-1195.
    [16]
    Li S F, Wang S X, Zhang F M, et al. Observing an Anticy-clonic Eddy in the South China Sea Using Multiple Underwater Gliders[C]//OCEANS 2018 Charleston Online Proceedings. Charleston, SC, USA: IEEE, 2018.
    [17]
    Shu Y Q, Chen J, Li S, et al. Field-Observation for an Anticyclonic Mesoscale Eddy Consisted of Twelve Gliders and Sixty-Two Expendable Probes in the Northern South China Sea During Summer 2017[J]. Science China Earth Sciences, 2019, 62 (2): 451-458.
    [18]
    Qiu C H, Mao H B, Yu J C, et al. Sea Surface Cooling in the Northern South China Sea Observed Using Chinese Sea-wing Underwater Glider Measurements[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 105: 111-118.
    [19]
    宗正, 熊学军, 刘玉红, 等. 水下滑翔机的中尺度涡观测方法[J]. 海洋科学进展, 2018, 36(2): 180-187.

    Zong Zheng, Xiong Xue-jun, Liu Yu-hong, et al. The Method of Mesoscale Eddy Observation Using Underwater Glider[J]. Advances in Marine Science, 2018, 36(2): 180-187.
    [20]
    Shu Y Q, Xiu P, Xue H J, et al. Glider-observed Anticy-clonic Eddy in Northern South China Sea[J]. Aquatic Ecosystem Health & Management, 2016, 19(3): 233-241.
    [21]
    Ramos A G, García-Garrido V J, Mancho A M, et al. La-grangian Coherent Structure Assisted Path Planning for Transoceanic Autonomous Underwater Vehicle Missions [J]. Scientific Reports, 2018, 8: 1-9.
    [22]
    Pelland N A. Eddy Circulation, Heat and Salt Balances, and Ocean Metabolism: Observations from a Seaglider- Mooring Array at Ocean Station Papa[D]. Washington: University of Washington, 2016.
    [23]
    Rudnick D L, Gopalakrishnan G, Cornuelle B D. Cyclonic Eddies in the Gulf of Mexico: Observations by Underwater Gliders and Simulations by Numerical Model[J]. Journal of Physical Oceanography, 2015, 45(1): 313-326.
    [24]
    Rudnick D L, Davis R E, Sherman J T. Spray Underwater glider Operations[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(6): 1113-1122.
    [25]
    Claustre H, Beguery L, Pla P. SeaExplorer Glider Breaks Two World Records[J]. Sea Technology, 2014, 55(3): 19- 21.
    [26]
    钱洪宝, 徐文, 张杰, 等. 对海洋仪器设备规范化海上试验的认识与思考[J]. 海洋通报, 2016, 35(4): 386-389.

    Qian Hong-bao, Xu Wen, Zhang Jie, et al. Overview and Further Thoughts on the Standardized Sea Trials for Marine Instruments[J]. Marine Science Bulletin, 2016, 35(4): 386-389.
    [27]
    马伟, 王延辉, 徐田雨. 微结构湍流测量水下滑翔机设计与试验研究[J]. 机械工程学报, 2017, 53(9): 22-29.

    Ma Wei, Wang Yan-hui, Xu Tian-yu. Design and Sea Trials of the Underwater Glider for Micro-structure Turbulence Measurement[J]. Journal of Mechanical Engineering, 2017, 53(9): 22-29.
    [28]
    刘曙光, 熊学军, 张宏伟, 等. 水下滑翔机内波观测方法[J]. 海洋科学进展, 2018, 36(2): 171-179.

    Liu Shu-guang, Xiong Xue-jun, Zhang Hong-wei, et al. Observation of Internal Waves by Using Underwater Glider[J]. Advances in Marine Science, 2018, 36(2): 171- 179.
    [29]
    刘璐, 兰世泉, 肖灵, 等. 基于水下滑翔机的海洋环境噪声测量系统[J]. 应用声学, 2017, 36(4): 370-376.

    Liu Lu, Lan Shi-quan, Xiao Ling, et al. Measurement System of Ambient Sea Noise Based on the Underwater Glider[J]: Technical Acoustics, 2017, 36(4): 370-376.
    [30]
    Liu L, Xiao L, Lan S Q, et al. Using Petrel II Glider to Analyze Underwater Noise Spectrogram in the South China Sea[J]. Acoustics Australia, 2018, 46(1): 151-158.
    [31]
    Liu F, Wang Y H, Wu Z L, et al., Motion Analysis and Trials of the Deep Sea Hybrid Underwater Glider Petrel-II [J]. China Ocean Engineering, 2017, 31(1): 55-62.
    [32]
    Sang H Q, Zhou Y, Sun X J, et al. Heading Tracking Control with an Adaptive Hybrid Control for Under Actuated Underwater Glider[J]. ISA Transactions, 2018, 80: 554-563.
    [33]
    张艺腾, 张明明, 王延辉, 等. 混合驱动水下滑翔机变翼系统研究[J]. 机械设计, 2018, 35(6): 1-8.

    Zhang Yi-teng, Zhang Ming-ming, Wang Yan-hui, et al. Study on Controllable Wings System of Hybrid-driven Underwater Gliders[J]. Journal of Machine Design, 2018, 35(6): 1-8.
    [34]
    Xue D Y, Wu Z L, Wang Y H, et al. Coordinate Control, Motion Optimization and Sea Experiment of a Fleet of Petrel-II Gliders[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 17.
    [35]
    Sun T S, Yang M Y, Wang Y H, et al. Parametric Design and Experimental Verification of Cicada-wing-inspired Controllable Wing Mechanism for Underwater Glider[C]// The 15th IFToMM World Congress in Mechanism and Machine Science. Poland: Springer, 2019: 23-32.
    [36]
    Yang Y N, Wang Y H, Ma Z S, et al. A Thermal Engine for Underwater Glider Driven by Ocean Thermal Energy[J]. Applied Thermal Engineering, 2016, 99: 455-464.
    [37]
    Wang G H, Yang Y N, Wang S X, et al. Efficiency Analysis and Experimental Validation of the Ocean Thermal Energy Conversion with Phase Change Material for Underwater Vehicle[J]. Applied Energy, 2019, 248: 475-488.
    [38]
    Da L, Song B W, Pan G, et al. Winglet Effect on Hydro-dynamic Performance and Trajectory of a Blended-wing-body Underwater Glider[J]. Ocean Engineering, 2019, 188: 106303.
    [39]
    Ye P C, Pan G. Design and Optimization of a Blended- Wing-Body Underwater Glider[J]. IOP Conference Series: Materials Science and Engineering, 2019, 491: 1-8.
    [40]
    Ma W, Wang Y H, Wang S X, et al. Optimization of Hydrodynamic Parameters for Underwater Glider Based on the Electromagnetic Velocity Sensor[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(14): 5019-5032.
    [41]
    Ma W, Wang Y H, Wang S X, et al. Absolute Current Estimation and Sea-Trial Application of Glider-Mounted AD2CP[J]. Journal of Coastal Research. https://www. jcronline.org/doi/abs/10.2112/JCOASTRES-D-18-00176.1. 2019-07-22.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1159) PDF Downloads(607) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return