• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
XIONG Lu, SHEN Jian, BI Xiao-wen, CHEN An-quan. Single Observer Passive Localization Algorithm Based on Iterated Measurement Updating Filter[J]. Journal of Unmanned Undersea Systems, 2019, 27(4): 406-412. doi: 10.11993/j.issn.2096-3920.2019.04.007
Citation: XIONG Lu, SHEN Jian, BI Xiao-wen, CHEN An-quan. Single Observer Passive Localization Algorithm Based on Iterated Measurement Updating Filter[J]. Journal of Unmanned Undersea Systems, 2019, 27(4): 406-412. doi: 10.11993/j.issn.2096-3920.2019.04.007

Single Observer Passive Localization Algorithm Based on Iterated Measurement Updating Filter

doi: 10.11993/j.issn.2096-3920.2019.04.007
  • Received Date: 2016-11-19
  • Rev Recd Date: 2016-12-18
  • Publish Date: 2019-08-31
  • Single observer passive localization has strong concealment performance, and can avoid the problem of data fusion and synchronization among multiple observing platforms. To address the performance degeneration of single observer passive localization affected by the factors such as measurement error consistency and initial state error, a single observer passive localization algorithm based on iterated measurement updating filter(IMUF) is proposed in this paper. Firstly, based on the theory of linear estimation, the classical one-step discrete linear estimator update is rewritten as the step-by-step updating process in continuous time. Secondly, the evolution equations of continuous stepwise state and its error matrix are deduced and the iterated measurement updating equation is obtained by discretization. And then, the Sigma point method are used to approximate calculate the Gaussian matrix included in updating equations, and the IMUF is obtained, which has the Kalman filter-like computation form and is suitable for single observer passive localization. Finally, compared with the classical method, the experimental results show that the IMUF algorithm can effectively deal with the performance degradation problem under non-uniform measurement error and large initial state error, with better filtering convergence and estimation accuracy.

     

  • loading
  • [1]
    孙仲康, 郭福成, 冯道旺, 等. 单站无源定位跟踪技术[M]. 北京: 国防工业出版社, 2008.
    [2]
    Shalom Y, Li X R, Thiagalingam K. Estimation with Applications to Tracking and Navigation[M]. New York: Wiley, 2001: 381-394.
    [3]
    Arasaratnam I, Haykin S. Cubature Kalman Filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269.
    [4]
    Rudolph M. Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models[D]. Oregon: Oregon Health & Science University, 2004: 251-256.
    [5]
    Garcia-Fernandez A F, Morelande M R, Grajal J. Truncated Unscented Kalman Filtering[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3372-3386.
    [6]
    Chang L, Hu B, Li A, et al. Transformed Unscented Kalman Filter[J]. IEEE Transactions on Automatic Control, 2013, 58(1): 252-257.
    [7]
    Gustafsson F, Hendeby G. Some Relations Between Extened Kalman Filter and Unscented Kalman Filter[J]. IEEE Transactions on Signal Processing, 2013, 60(2): 545-555.
    [8]
    Zanetti R. Adaptable Recursive Update Filter[J]. Journal of Guidance Control & Dynamics, 2015, 38(7): 1-5.
    [9]
    Perea L, How J, Breger L. Nonlinearity in Sensor Fusion: Divergence Issues in EKF, Modified Truncated SOF, and UKF[C]//Proceedings of AIAA Conference of Guidance, Navigation, and Control, South Carolina, USA: IEEE, 2007: 3489-3499.
    [10]
    Morelande M R, Garcia-Fernandez A F. Analysis of Kalman Filter Approximations for Nonlinear Measurements[J]. IEEE Transactions on Signal Processing, 2013, 61(12): 5477-5484.
    [11]
    李宗华, 肖予钦, 周一宇, 等. 利用频域和空域信息的单站无源定位跟踪算法[J]. 系统工程与电子技术, 2004, 26(5): 613-616.

    Li Zong-hua, Xiao Yu-qing, Zhou Yi-yu, et al. Single Station Localization Algorithm for Source Free Targets Using Frequent and Spatial Information[J]. System Engineering and Electronic Technology, 2004, 26(5): 613-616.
    [12]
    Jazwinski A. Stochastic Process and Filtering Theory[M]. New York: Academic Press, 1970.
    [13]
    Sarkka S. On Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear Systems[J]. IEEE Transactions on Automatic Control, 2007, 52(9): 1631- 1641.
    [14]
    袁罡, 陈鲸. 基于UKF的单站无源定位与跟踪算法[J]. 电子与信息学报, 2008, 30(9): 2120-2123.

    Yuan Gang, Chen Jing. Single Station Localization and Tracking Algorithm for Source Free Targets Based on UKF[J]. Journal of Electronics and Information, 2008, 30(9): 2120-2123.
    [15]
    胡振涛, 张勇, 刘先省. 基于量测迭代更新集合卡尔曼滤波的机动目标跟踪算法[J]. 控制理论与应用, 2014, 31(11): 1517-1523.

    Hu Zhen-tao, Zhang Yong, Liu Xian-xing. Maneuver Target Tracking Algorithm Based on Iterated Measurement Updated Ensemble Kalman Filter[J]. Control Theory & Application, 2014, 31(11): 1517-1523.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(675) PDF Downloads(219) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return