• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
DU Xue, LIAO Hong-zhou, ZHANG Xun. Underwater Target Recognition Method Based on Deep Convolution Feature[J]. Journal of Unmanned Undersea Systems, 2019, 27(3): 260-265. doi: 10.11993/j.issn.2096-3920.2019.03.004
Citation: DU Xue, LIAO Hong-zhou, ZHANG Xun. Underwater Target Recognition Method Based on Deep Convolution Feature[J]. Journal of Unmanned Undersea Systems, 2019, 27(3): 260-265. doi: 10.11993/j.issn.2096-3920.2019.03.004

Underwater Target Recognition Method Based on Deep Convolution Feature

doi: 10.11993/j.issn.2096-3920.2019.03.004
  • Received Date: 2018-09-30
  • Rev Recd Date: 2018-12-25
  • Publish Date: 2019-06-30
  • With the help of artificial intelligence technology, the intelligent recognition technology for unmanned undersea vehicle(UUV) to detect underwater target is presented. According to the characteristics of high noise and low contrast in underwater environment, median filtering and local enhancement are adopted to preprocess underwater images. Based on the characteristics of small sample of underwater images, the idea of incremental convolution layer by layer is proposed drawing from the visual geometry group net(VGGNet), and an underwater intelligent recognition framework is designed by using deep convolution neural network (DCNN) for training on the large data set Cifar-10 and learning general features of the image. In addition, migration learning and data enhancement technology are used for transferring knowledge to learn the unique features of underwater targets, so as to solve the problem of insufficient underwater data sets and to prevent over-fitting. Simulation results show that the proposed underwater target intelligent recognition technology has obvious advantages over the traditional algorithm in recognition effect and automation degree on specific test set.

     

  • loading
  • [1]
    Zhang W K, Wang G X, Xu G H, et al. Development of Control System in Abdominal Operating ROV[J]. Chinese Journal of Ship Research, 2017, 12(2): 124-132.
    [2]
    Apgar J F, Edelson J S, Furtado J, et al. ORCA-IX: An Autonomous Underwater Vehicle[D]. Massachusetts In-stitute of Technology. Massachusetts, US: Massachusetts Institute of Technology, 2006.
    [3]
    Zhang L, Jiang D P, Zhao J X. The Basic Control System of an Ocean Exploration AUV[J]. Applied Mechanics and Materials, 2013(411/412/413/414): 1757-1761.
    [4]
    Ferri G, Munafo A, Lepage K D. An Autonomous Underwater Vehicle Data-Driven Control Strategy for Target Tracking[J]. IEEE Journal of Oceanic Engineering, 2018, 99: 1-21.
    [5]
    Jaffe M. Underwater Optical Imaging: Status and Prospects[J]. Oceanography, 2001, 14(3): 66-76.
    [6]
    Lin Y, Lv F, Zhu S, et al. Large-scale Image Classification: Fast Feature Extraction and SVM Training[C]//IEEE Conference on Computer Vision and Pattern Recognition, Providence. Colorado: IEEE, 2011: 1689-1696.
    [7]
    Wolek A, Dzikowicz B R, Mcmahon J, et al. At-Sea Evaluation of an Underwater Vehicle Behavior for Passive Target Tracking[J]. IEEE Journal of Oceanic Engineering, 2018, 99: 1-10.
    [8]
    Kim J, Cho H, Pyo J, et al. The Convolution Neural Network Based Agent Vehicle Detection Using Forward-looking Sonar Image[C]//2016’ IEEE/OES Oceans. Shanghai: IEEE, 2016: 1-5.
    [9]
    Matias V T. End-to-end Object Detection and Recognition in Forward-looking Sonar images with Convolutional Neural Networks[C]//2016’ IEEE/OES Autonomous Underwater Vehicles. Tokyo: IEEE, 2016: 144- 150.
    [10]
    Qin H, Li X, Liang J, et al. Deep Fish: Accurate Underwater Live Fish Recognition with a Deep Architecture[J]. Neurocomputing, 2016, 187: 49-58.
    [11]
    Li X, Shang M, Hao J, et al. Accelerating Fish Detection and Recognition by Sharing CNNs with Objectness Learning [C]//2016’ IEEE/OES Oceans. Shanghai: IEEE, 2016: 1-5.
    [12]
    Zhu P, Isaacs J, Fu B, et al. Deep Learning Feature Extraction for Target Recognition and Classification in Underwater Sonar Images[C]//2017’ IEEE 56th Annual Conference on Decision and Control (CDC). Melbourne: IEEE, 2017: 2724-2731.
    [13]
    王强, 曾向阳. 深度学习方法及其在水下目标识别中的应用[C]//中国声学学会水声学分会2015年学术会议论文集. 武汉: 中国声学学会, 2015.
    [14]
    Zuiderveld K. Contrast Limited Adaptive Histogram Equalization[M]. Graphic Gems IV. San Diego: Academic Press Professional, 1994: 474-485.
    [15]
    Pan S J, Yang Q. A Survey on Transfer Learning[J]. IEEE Transactions on Knowledge & Data Engineering, 2010, 22(10): 1345-1359.
    [16]
    Cheng P M, Malhi H S. Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images[J]. Journal of Digital Imaging, 2017, 30(2): 234.
    [17]
    龙明盛. 迁移学习问题与方法研究[D]. 北京: 清华大学, 2014.
    [18]
    Li X X, Deng Z H, Choi K S. Generalized Hidden-Mapping Transductive Transfer Learning for Recognition of Epileptic Electroencephalogram Signals[J]. IEEE Transactions on Cybernetics, 2018, 99: 1-15.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1268) PDF Downloads(591) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return